密码学是数学的应用,它通过代码开发消息保密。它有助于保持通信中的机密性和完整性,从而确保篡改数据保存。数字理论和加密对于现代数据安全至关重要,为屏蔽敏感信息和保证秘密通信提供了强有力的策略[1]。作者[2]列出了采用加密原语的标准应用程序和协议。伯顿在[3]中解释了这个数字理论传统上对著名的数学家和业余爱好者都吸引人。在[4]中,作者强调了数字理论和加密在数字时代对数据安全的重要性,从而促进了通信安全和信任。在[5]中,PrasadB。解释了广泛使用的算法,用于检测和纠正LUCAS编码方法中的大信息单元中的错误,尤其是矩阵元素。有关更多框架,可以指[6-11]。在[12]中,作者发明了线性双方方程在平衡化学方程中的应用。
在环理论中,构建一个包含另一个环的更大环非常有用,这被称为环扩展 [1-2, 11-15]。最近,人们研究使用 Turiyam 环 [16] 处理四向数据分析,并研究其广泛的性质 [17-19] 来解决各种决策问题。然而,需要对一些猜想和方程进行基本的证明,以理解数学代数的可用性 [20]。为了实现这一目标,本文重点研究了一些丢番图方程的可逆性条件及其对 Turiyam 环的扩展。
我主要在数学分析和数理论中具有广泛的兴趣。我对任何对潜在学生感兴趣的事物感到开放。我监督的一个博士项目可能与我最近从事的一些主题有关:
用户意图。基于 SSVEP 与视觉刺激调制频率锁定这一知识,界面通常设置为在场景中具有多个目标,每个目标都标记有一个通过闪烁传递的唯一频率。目标可以是放置在物体上或附近的发光二极管 (LED),以表示潜在动作、物品或到达坐标 [4–7],也可以表示在计算机屏幕上,每个目标块代表 BMI 拼写器中的字符或用于控制计算机或其他设备的命令 [8–10]。为了从界面中呈现的所有目标中识别出用户的预期目标,解码算法会分析包含 SSVEP 的收集到的脑信号的频率成分,并根据主要频率特征做出决策。在典型的 SSVEP 设置中,诱发的 SSVEP 包含刺激频率 𝑓 ,以及该频率的谐波 2 𝑓、3 𝑓,... [1, 11]。传统基于 SSVEP 的 BMI 的局限性之一是目标数量受到 SSVEP 有限的响应范围 [1] 和谐波存在的限制,如果在界面中同时使用某个频率及其谐波,可能会导致错误分类。这减慢了 BMI 在提高命令处理能力(命令数量)方面的发展 [12]。为了解决这个问题,引入了多频 SSVEP 刺激方法,旨在增加在有限频率下可呈现的目标数量 [13–17]。然而,多频 SSVEP 的解码器尚未得到广泛探索。现有的多频 SSVEP 解码器包括基于功率谱密度的分析(PSDA)[15, 17]、多频典型相关分析(MFCCA)[18] 和针对每个单独用户或用例的基于训练的算法 [13, 19]。与两种无需训练的方法相比,基于训练的算法具有更高的分类准确率,但需要为每个用户进行额外的训练和界面设置。PSDA 和 MFCCA 支持即插即用,提高了 BMI 的实用性。然而,PSDA 通常解码准确率有限,因为它没有充分考虑多频 SSVEP 中的复频率特征,这些特征不仅包含刺激频率及其谐波(如单频 SSVEP),还包含刺激频率之间的线性相互作用 [16]。MFCCA 通过在解码中引入线性相互作用而显示出在多频 SSVEP 解码中的优势 [18],但 MFCCA 的一个主要问题是它是基于典型相关分析 (CCA) [20] 开发出来的,具有很高的时间复杂度。 CCA 的渐近时间复杂度为 O ( lD 2 ) + O ( D 3 ) (以 O ( n 3 ) 为界,其中 n 表示解码时的输入大小),其中 l
rsa是不对称加密中广泛采用的方法,通常用于数字签名验证和消息加密。RSA的安全性依赖于整数因素的挑战,一个问题在计算上不可行或高度复杂,尤其是在处理足够大的安全参数时。RSA中整数分解问题的有效利用可以使对手可以假设关键持有人的身份并解密此类机密信息。安全硬件中使用的密钥特别重要,因为它们保护的信息的价值通常更高,例如在确保付款交易的背景下。通常,RSA面临各种攻击,利用其关键方程式中的弱点。本文引入了一个新的漏洞,该漏洞可以同时分解多个RSA模量。通过使用对(𝑁𝑁,𝑒)和固定值𝑦满足双苯胺方程𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥 -2 - 2 𝜙(𝑁𝑁)=𝑧𝑖𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖𝑧,我们使用晶格基碱基还原技术成功地分解了这些模量。值得注意的是,我们的研究扩大了被认为是不安全的RSA解密指数的范围。
摘要:提高绿色供应链的有效性是最大程度地减少废物,优化资源使用并减少业务运营对环境影响的关键一步。为了实现这些目标,应在整个供应链中实施可持续实践。这样做,企业不仅可以提高环境绩效,而且可以降低成本,提高客户满意度并在市场上获得竞争优势。但是,由于存在竞争特征,不精确的信息以及缺乏知识,因此选择适当的绿色提供商是一个复杂且无法预测的决策问题。线性二磷酸化(LIDF)框架的主要目标是帮助决策者选择最佳的行动过程。本文介绍了几个新型聚合操作员(AOS),即线性双苯胺模糊软性最大含量平均值(LIDFSMA)和线性双苯胺模糊软性软体几何(LIDFSMG)操作员。然后通过一个简单的示例来证明所提出的方法的绿色供应商优化技术,该技术包含线性双磷灰石模糊含量,显示了该方法的实用性和适用性。总体而言,拟议的LIDF框架和AOS可以帮助决策者选择最合适的绿色提供商,从而提高绿色供应链的效率。
摘要:及其控制参数的线性双性模糊集(LDFS)理论的概念是机器学习和数据驱动的多标准决策(MCDM)的强大模型。正弦 - 三角学函数(STF)具有两个重要的特征,周期性和对称性,它们是信息分析的非常有用的工具。遵循STF和LDFS理论的特征,本文介绍了线性双苯胺模糊数(LDFNS)的正弦 - 三角法操作。这些操作定律奠定了开发新的线性双苯胺模糊的正弦 - 三角集合操作员(LDFSTAOS)的基础。行业4.0技术融入医疗保健中有可能彻底改变患者护理。最具挑战性的任务之一是选择医疗保健供应链(HSC)的有效供应商。传统供应商并不根据行业4.0,特别不确定性有效。根据LDFSTAO提出了一个新的MCDM框架,以检查行业4.0中的HSC绩效。进行信誉测试,灵敏度分析和比较分析,以表达所提出方法的新颖性,可靠性和效率。
方程是通过将其减少到可以解决的方程式来获得的,该方程是通过采用合适的转换和应用分解方法来解决的。关键词:三元立方,非均匀的立方,整数解决方案简介数字理论的有趣领域之一是Diophantine方程的主题,它使业余爱好者和数学家都着迷和动机。众所周知,在仅需要整数溶液的两个或多个未知数中,双方方程是多项式方程。很明显,多菲甘丁方程在数学的发展中发挥了重要作用。近年来,毒液方程式的理论很受欢迎,为专业人士和业余爱好者提供了肥沃的基础。除了已知的结果外,这还充满了未解决的问题。尽管可以简单而优雅地说明其许多结果,但它们的证明有时很长而复杂。没有关于一般方法的统一知识。如果可以解决该问题是否可解决,并且在解决性的情况下,则认为一个养分问题被认为是解决的,以展示所有满足问题中规定要求的整数。成功完成所有满足问题要求的整数的成功完成了数字理论的进一步进步,因为它们在图理论,模块化理论,编码和加密,工程,音乐,音乐等领域提供了良好的应用。整数在自然科学的演变中反复发挥了至关重要的作用。整数理论为现实世界中的问题提供了答案。众所周知,同质或非均匀的二芬太汀方程激起了许多数学家的利益。值得观察到立方双磷酸方程式属于用于密码学中使用的椭圆曲线理论。特别是,可以参考三个未知数和四个未知数的立方方程[1-10]。本文的主要目的是向有趣的三元非均匀的立方>展示不同的整数解决方案
2024年算术统计中的nilpotent计数问题,AIM,帕萨迪纳,加利福尼亚州。美国2,墨西哥瓦哈卡州CasaMatemáticaoaxaca的数字理论。XVI算法数理论研讨会。 MIT,马萨诸塞州波士顿。 Mordell猜想100年后。 MIT,马萨诸塞州波士顿。 LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。XVI算法数理论研讨会。MIT,马萨诸塞州波士顿。 Mordell猜想100年后。 MIT,马萨诸塞州波士顿。 LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。MIT,马萨诸塞州波士顿。Mordell猜想100年后。MIT,马萨诸塞州波士顿。 LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。MIT,马萨诸塞州波士顿。LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。LMFDB中的超几何动机。MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。MIT,马萨诸塞州波士顿。shimura曲线在LMFDB中。达特茅斯,新罕布什尔州汉诺威。亚利桑那冬季学校:阿贝利安品种。Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Tucson,AZ。2023 Palmetto编号理论系列XXXVII。UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。icerm,普罗维登斯,RI。MRC:堆栈的显式计算。布法罗,纽约。Palmetto编号理论系列XXXVII。UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。UGA,乔治亚州雅典。算术统计会议。Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Cirm,Marseille,法国。算术统计中的春季学校。Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Cirm,Marseille,法国。亚利桑那冬季学校:不太可能的交叉点。Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Tucson,AZ。入门研讨会:Diophantine几何形状。MSRI,伯克利,加利福尼亚州。连接研讨会:Diophantine几何形状。MSRI,伯克利,加利福尼亚州。2022 Palmetto编号理论系列XXXV。o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。o的SC,哥伦比亚,SC。agnes:高维模量的暑期学校。布朗,普罗维登斯,RI。PCMI:数字理论通过计算告知。犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。犹他州帕克市。ctnt:康涅狄格州暑期学校的数字理论。uConn,Storrs,Ct。插科打:佐治亚州代数几何研讨会。Tucson,AZ。Tucson,AZ。埃默里,佐治亚州亚特兰大。亚利桑那州冬季学校:超越GL 2的自动形式。2021 PCMI:逆Galois问题。在线。
摘要:初等数论是数学的一个重要分支,主要研究整数性质和关系。本综述全面介绍了关键概念、定理和应用。它研究了整数性质,如可整除性、素数性和一致性,并介绍了除法和欧几里得算法作为基本工具。本文探讨了素数、素数的无穷大和素数定理。讨论了算术基本定理,即每个正整数都有一个唯一的素因数分解,并讨论了它的证明和意义。研究了丢番图方程,即涉及整数的多项式方程,并给出了解法。重点介绍了它在各个领域的应用,包括密码学中的 RSA 算法和 Diffie-Hellman 密钥交换、编码理论中的 Hamming 和 Reed-Solomon 等纠错码以及计算机科学中的算法研究。本综述是初等数论及其现代意义的学生和研究人员的宝贵资源。关键词:可除性、素数、欧几里得算法、一致性、丢番图方程、密码学。提交日期:2024 年 12 月 15 日接受日期:2024 年 12 月 25 日