rsa是不对称加密中广泛采用的方法,通常用于数字签名验证和消息加密。RSA的安全性依赖于整数因素的挑战,一个问题在计算上不可行或高度复杂,尤其是在处理足够大的安全参数时。RSA中整数分解问题的有效利用可以使对手可以假设关键持有人的身份并解密此类机密信息。安全硬件中使用的密钥特别重要,因为它们保护的信息的价值通常更高,例如在确保付款交易的背景下。通常,RSA面临各种攻击,利用其关键方程式中的弱点。本文引入了一个新的漏洞,该漏洞可以同时分解多个RSA模量。通过使用对(𝑁𝑁,𝑒)和固定值𝑦满足双苯胺方程𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥 -2 - 2 𝜙(𝑁𝑁)=𝑧𝑖𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖𝑧,我们使用晶格基碱基还原技术成功地分解了这些模量。值得注意的是,我们的研究扩大了被认为是不安全的RSA解密指数的范围。
主要关键词