方程是通过将其减少到可以解决的方程式来获得的,该方程是通过采用合适的转换和应用分解方法来解决的。关键词:三元立方,非均匀的立方,整数解决方案简介数字理论的有趣领域之一是Diophantine方程的主题,它使业余爱好者和数学家都着迷和动机。众所周知,在仅需要整数溶液的两个或多个未知数中,双方方程是多项式方程。很明显,多菲甘丁方程在数学的发展中发挥了重要作用。近年来,毒液方程式的理论很受欢迎,为专业人士和业余爱好者提供了肥沃的基础。除了已知的结果外,这还充满了未解决的问题。尽管可以简单而优雅地说明其许多结果,但它们的证明有时很长而复杂。没有关于一般方法的统一知识。如果可以解决该问题是否可解决,并且在解决性的情况下,则认为一个养分问题被认为是解决的,以展示所有满足问题中规定要求的整数。成功完成所有满足问题要求的整数的成功完成了数字理论的进一步进步,因为它们在图理论,模块化理论,编码和加密,工程,音乐,音乐等领域提供了良好的应用。整数在自然科学的演变中反复发挥了至关重要的作用。整数理论为现实世界中的问题提供了答案。众所周知,同质或非均匀的二芬太汀方程激起了许多数学家的利益。值得观察到立方双磷酸方程式属于用于密码学中使用的椭圆曲线理论。特别是,可以参考三个未知数和四个未知数的立方方程[1-10]。本文的主要目的是向有趣的三元非均匀的立方>展示不同的整数解决方案
主要关键词