人体组织工程矩阵(HTEMS)已被提议作为原位式心脏瓣膜(TEHVS)的有前途的方法。然而,人们对HTEM中的ECM组成如何在组织培养时间中发展仍然存在有限的理解。因此,我们使用(IM-MUNO)组织学,生化测定和质谱法(LC-MS/MS)进行了培养时间(2、4、6周)的纵向HTEM评估。 2)使用基因集富集分析(GSEA)分析参与ECM开发的蛋白质途径; 3)使用单轴拉伸测试评估HTEM机械表征。最后,作为概念验证,使用6周HTEM样品进行了TEHV制造,在脉冲重复器中测试。LC-MS/MS证实了在组织学和生化测定中观察到的ECM蛋白的组织培养时间依赖性增加,揭示了最丰富的胶原蛋白(Col6,Col12),蛋白聚糖(HSPG2,VCAN,VCAN)和糖蛋白(FN,TNC)。gsea在2周(mRNA代谢过程),4周(ECM生产)和6周(ECM组织和成熟度)的HTEM中鉴定出最大代表的蛋白质途径。单轴机械测试显示出在失败时的刚度和应力增加,以及组织培养时间的应变减少。htem的TEHV在肺部和主动脉压力条件下表现出有希望的体外性能,具有对称的LEA频率和无狭窄。总之,在组织培养时间内ECM蛋白丰度和成熟度增加,随之而来的是HTEM机械性征象。这些发现表明,较长的组织培养会影响组织组织,导致可能适合高压应用的HTEM。
等效电路模型 (ECM)、电化学模型和经验退化模型 (EDM) 是常用的 SOH 估算模型。基于 ECM 的方法不研究电池内部复杂的物理化学反应过程,而是基于电路模型,采用滤波算法进行参数辨识,并更新模型参数进行 SOH 估算。例如,余 [3] 采用递归最小二乘 (RLS) 法辨识 ECM 的参数,然后采用自适应 H∞ 滤波算法估计 SOH。徐 [4] 也采用 RLS 辨识参数,然后估算 SOH。基于模型的方法虽然简单、计算成本低,但自适应性较差,且估算结果更多地依赖于参数辨识和滤波算法的有效性。
抽象的细胞外基质(ECM)蛋白在培养肌肉干细胞(MUSC)中起着至关重要的作用。但是,缺乏关于这些蛋白质中的每种如何影响MUSC与牲畜动物的扩散和分化的广泛研究。因此,我们研究了各种ECM涂层(胶原蛋白,纤连蛋白,明胶和层粘连蛋白)在猪MUSC的增殖,分化和成熟中的影响。从14天大的伯克希尔小猪中分离出来的猪猪肉,在ECM涂层的板上培养,经历了三天的增殖,然后进行了三天的分化。层粘连蛋白上的MUSC的增殖率高于其他粘连率(p <0.05)。在层粘连蛋白,胶原蛋白和纤连蛋白上,PAX7,MyF5和MYOD的mRNA表达水平没有显着差异(P> 0.05)。在分化期间,与其他ECMS相比,在层粘连蛋白上培养的MUSC表现出明显更高的分化速率(P <0.05)。同样,层粘连蛋白上的MUSC与成熟的肌肉纤维(例如MyH1和Myh4)相关的mRNA表达较高,分别与其他ECM涂层的MUSC相比,分别与肌肉纤维型IIX型IIX和肌肉纤维型IIB相关(P <0.05)。总而言之,我们对ECM的比较表明,层粘连蛋白显着增强了MUSC的增殖和分化,表现优于其他ECM。具体来说,在层粘连蛋白上培养的肌肉纤维表现出更成熟的表型。关键字细胞外基质,猪肌干细胞,层粘连蛋白,增殖,分化这些发现强调了层粘连蛋白在体外肌肉研究和培养肉类产生的潜力,突出了其在支持快速细胞增殖,更高的分化速率和成熟肌肉纤维的发展中的作用。
对于 ST 段抬高型心肌梗死 (STEMI) 患者,梗死扩大是死亡率和心力衰竭的预后决定因素[1]。梗死的最终大小取决于再灌注无法挽救的缺血区域和再灌注本身造成的损伤,即缺血-再灌注 (IR) 损伤 [2,3]。由于减少缺血性损伤的策略可能会改善 STEMI 患者的预后,因此有必要识别预后生物标志物并加强对缺血性损伤的病理生理机制的理解,以揭示 STEMI 的新治疗策略。心脏细胞外基质 (ECM) 的有害变化似乎与心肌缺血性损伤有关,这可能通过诱发炎症、造成微血管功能障碍和加剧心脏重塑来促进梗死面积扩大 [4]。在心肌梗死 (MI) 的急性期,临时 ECM 的形成促进免疫细胞浸润和成纤维细胞的激活 [5],而血管内壁的 ECM 则与冠状动脉微血管损伤和阻塞有关 [6]。在心肌梗死后心肌的后期,ECM 的积聚不仅会取代梗死区域的坏死心肌细胞,还会在边缘区和存活心肌中产生纤维化,导致心脏功能恶化 [7]。如果参与这些 ECM 变化的蛋白质溢出到循环系统,它们可能成为缺血性损伤的循环标志物。为了确定与缺血性损伤相关的生物标志物,我们对因 STEMI 入院患者血清样本中的一组与 ECM 变化相关的生物标志物进行了量化。我们选择了一组已知参与炎症、纤维化和 ECM 重塑的蛋白质,这些蛋白质与转化生长因子 β (TGF- β ) 的活性有关,并可用于适当的检测方法。选定的标志物是骨桥蛋白 [ 8 ]、骨膜蛋白 [ 9 ]、syndecan-1 [ 10 ]、syndecan-4 [ 11 ]、骨形态发生蛋白 (BMP)-7 [ 12 ] 和生长分化因子 (GDF)-15 [ 13 ]。由于 TGF- β 是梗死后炎症和纤维化 ECM 重塑的关键调节因子 [ 14 , 15 ],我们假设这些 ECM 相关蛋白可能与 MI 后的缺血性损伤程度和结果有关。事实上,在患有急性冠状动脉综合征和循环中 GDF-15 [ 16 ]、syndecan-1、骨膜蛋白和骨桥蛋白水平升高的患者中观察到了不良临床结果 [ 17 - 19 ],而在患有 MI 的患者中观察到了 syndecan-4 水平升高 [ 20 ]。然而,关于它们与心肌缺血损伤的关系的知识有限。缺血性损伤通过心脏磁共振 (CMR) 进行评估,包括梗死大小和左心室 (LV) 尺寸和功能,以及微血管阻塞 (MVO) 和心肌挽救指数 (MSI) 作为 IR 损伤的参数。因此,本研究的目的是探索 STEMI 后急性期和慢性期测量的选定生物标志物与 1) 通过 CMR 成像评估的心肌缺血损伤和心脏功能以及 2) 长期死亡率之间的潜在关联。
锂离子电池的准确建模对于从电动汽车(EV)到网格存储的一系列AP平板优化性能和安全至关重要。本文使用60 AH Prismatic石墨/锂磷酸铁电池作为案例研究,对两种普遍的电池建模方法进行了两种普遍的电池建模方法:等效电路模型(ECM)和基于物理的模型(PBM)。这项工作的重点是通过在恒定和可变的电流密度下的不同环境温度下的一组全面的电气测试(包括全球协调的轻型车辆测试周期(WLTC)协议),通过在不同环境温度下进行全面的电气测试来开发,参数化和交叉验证这些方法。此评估不仅评估了ECM和PBM的准确性和可靠性,还强调了其优势和局限性。ECM在其校准范围内和可变电流轮廓内显示了计算速度,易于校准和准确性的优势。然而,其准确性在较高的电流下会降低,尤其是对于延长的电流脉冲以及校准范围之外的延长,这在1C以上的充电方案中证明了这一点。相反,PBM在校准数据集之外保持准确性,但需要估计许多物理参数,艰苦的校准过程以及用于可变当前情况的扩展计算时间。在所研究的条件范围内(从C/3到2C之间的10℃和40℃),ECM的电压预测的平均误差为51.5 mV,PBM的平均误差为19.3 mV,而ECM的平均误差为0.9℃,而对于温度预测,PBM的平均值为0.9°C。总而言之,虽然ECM适用于以短暂和低强度的电荷脉冲来重现恒定放电或类似WLTC的轮廓,但PBM强度在于其对高速运营的预测性,使其成为模拟现实的EV负载操作和优化快速收费协议的互补工具。这些见解有助于电池技术的持续发展,重点是现实且适用的模型开发和参数化。
细胞外基质(ECM)是嵌入神经系统各种细胞的蛋白质和糖的密集且动态的网络。它由许多大分子组成,例如胶原蛋白,弹性蛋白,纤维蛋白,层粘连蛋白,糖蛋白,如Tenascin,Glycosaminoglycans(GAGS)和蛋白聚糖。这些成分由神经元和神经胶质细胞分泌。它占大脑量的20%,但尚未受到神经科学研究社区的要求。到目前为止,大多数研究重点都放在神经元或神经胶质细胞成分上。细胞外系统在脑部疾病的病因和进展中的作用,反之亦然,神经系统疾病如何影响细胞外基质的影响仍然很大程度上没有探索。已知ECM在神经发育过程中起多种作用,但是其在人脑的发展中的作用尚未完全了解。由周围神经元网(PNN)组成的凝结ECM形成细胞体周围的网状结构和神经元近端神经突(Sigal等,2019)。在神经系统开发过程中,ECM调节神经祖细胞的增殖和不同。它还控制细胞形态,包括轴突和树突伸长,调节其连通性和皮质折叠。此外,ECM还存储了创建微域以调节神经元迁移和突触可塑性的信号因子(Dityatev等,2010; Dick等,2013)。PNN被认为充当分子制动,可关闭和调节突触可塑性的关键时期(Dityatev等,2010; Wang和Fawcett,2012)。因此,ECM功能障碍,尤其是PNN损伤与几种神经发育障碍有关,例如自闭症谱系障碍,精神分裂症,双相障碍,易碎X综合征和癫痫病(Reinhard等,2015; Rogers等,2015; Rogers等; Rogers等,2018; Wen et al。,2018)。关于神经退行性疾病的数十年研究表明,神经元死亡增加了,但神经元不良健康背后的机制远非明显。尚未详细研究垂死细胞周围额外细胞基质的功能和功能。最近,在帕金森氏病啮齿动物模型中报道了神经变性,额外的细胞空间和基质之间的相互作用,该模型在被忽视的隔室中散发出灯,以分散聚集的α-舌核蛋白种子(Soria等,2020)。正如Pinter和Alpar最近回顾的那样,选择性ECM组件可以主动触发特定于疾病的有毒物质,或在ECM中反应地积累它们(Pinter and Alpar,2022)。几项研究已关联
结肠腺癌(COAD)是第三常见的癌症,是全球癌症死亡的第二大主要原因,这已成为全球公共卫生挑战(1)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。 开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。 近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。 因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。 细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。 ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。 临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。 最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。 ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。随着癌症检测技术的发展,早期诊断的率有所提高,但是COAD的诊断迅速转移到年轻,更高级的阶段(2)。开发从息肉到腺癌的COAD需要十多年的时间,这一长期进展为干预提供了防止其发展为高级阶段的机会(3)。近年来,高通量测序技术和生物信息学的快速发展促进了COAD的探索(4,5)。因此,从生物信息学分析的肿瘤分子靶标的角度了解COAD的发病机理对于治疗和预防COAD具有很大的意义。细胞外基质(ECM)是由各种蛋白质组成的复杂结构,该结构通过调节细胞间串扰来调节生物学功能(6-8)。ECM是肿瘤微环境(TME)的重要组成部分,其异常表达促进了肿瘤的形成,进展和转移(9,10)。临床病理学分析证实,ECM在肿瘤患者中的过度沉积与预后不良有关(11,12)。最近,高通量测序分析表明,与ECM相关的基因在肿瘤进展过程中异常表达(13,14)。ECM的积累诱导缺氧和代谢应激,进而激活肿瘤中的抗凋亡和药物抗性途径(15)。此外,ECM的高密度阻碍了免疫细胞的内化,这会影响肿瘤免疫疗法的作用(16-18)。因此,基于与ECM相关基因的预后模型将为预测COAD患者的复发提供基础。瘦素是瘦素基因(LEP)的糖蛋白产物。流行病学研究支持LEP与COAD风险增加有关(19)。研究表明,COAD组织中LEP mRNA的表达水平上调,这与COAD患者的预后不良有关(20,21)。周围神经形成复杂的肿瘤微环境,由多种细胞类型和因子组成,包括神经生长因子(NGF)。NGF在几种实体瘤的生长,侵袭和转移中起重要作用。Lei等。 发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。 Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Lei等。发现,胰腺癌细胞分泌的NGF诱导了Schwann细胞的自噬,这反过来参与了胰腺肿瘤的增殖和转移(22)。Hayakawa等。 表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。 procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。 PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。 他等人。 证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。 我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床高度表达Hayakawa等。表明,NGF的过表达显着加速了胃肿瘤的生长和侵袭(23)。procollagen C-耐肽酶增强剂2(PCOLCE2)是一种ECM糖蛋白,可作为功能性胶原蛋白C蛋白酶增强剂(24)。PCOLCE2参与EMT,并在促进Coad转移中起关键作用(25)。他等人。证明PCOLCE2是一种基于生物信息学分析的COAD患者临床预后的特征基因(26)。我们验证了LEP,NGF和PCOLCE2在肿瘤组织中使用COAD临床在这项研究中,我们鉴定了与WGCNA和Lasso-Cox回归相关的三个与ECM相关的基因(LEP,NGF和PCOLCE2)。
实现案例管理现代化,更好地服务纳税人 今年,我们将第一个案例管理系统迁移到新的基于云的企业案例管理 (ECM) 平台,成功地为免税和政府实体免税组织通信部门客户将纸质流程转换为数字化流程。作为该计划的一部分,美国国税局通常每年管理 30,000 多封信件和表格。我们自动生成了预填充的信件模板。2021 财年成功迁移到新 ECM 平台的其他业务流程包括美国国税局公平、多样性和包容性办公室 (EDI) 的案例工作、W&I 外部推荐以及美国国税局志愿者所得税援助 (VITA) 和老年人税务咨询 (TCE) 计划的补助金管理。这些在 ECM 平台上的初始部署
简介:美国宇航局的欧罗巴快船号航天器于 2024 年 10 月 14 日从肯尼迪航天中心成功发射。它将在接下来的 5.5 年内巡航,然后到达木星系统,在那里它将多次飞越木卫二,以表征其地下海洋的宜居性 [1,2]。欧罗巴快船磁力仪 (ECM) 对于确定海洋的厚度和电导率至关重要 [3,4]。ECM 由三个三轴磁通门 (FG) 磁力仪组成,它们位于梯度仪配置的吊杆上。2024 年 11 月 5 日,在三个传感器均已通电并以高速率模式 (16 个样本/秒) 收集数据的情况下,8.5 米磁力仪吊杆成功部署。在这项工作中,我们展示了 ECM 在此期间对航天器场和行星际磁场 (IMF) 的首次观测。
我们需要新颖的策略来针对癌症的复杂性,尤其是转移性疾病的复杂性。作为这种复杂性的一个例子,某些组织是转移的特别好客的环境,而其他组织则不含肥沃的微环境来支持癌细胞生长。持续的证据表明,组织的细胞外基质(ECM)是支持癌细胞生长在原发性和次要组织部位的必要因素之一。对癌症转移的研究主要集中在二维组织培养聚苯乙烯板上各种细胞因子和生长因子环境中肿瘤细胞的分子适应。内部成像已经改变了我们实时观察肿瘤细胞侵袭,侵入,渗出和生长的能力。由于支持肿瘤微环境中所有细胞的间质ECM在典型插入成像的可能窗口之外随时间尺度变化,因此生物工具不断开发简单和复杂的体外控制环境,以研究肿瘤(和其他)与该矩阵的细胞相互作用。从这个角度来看,我们专注于负责维护肿瘤器官的病理稳态,与癌症相关的成纤维细胞(CAF)及其自我产生的ECM。后者以及肿瘤和其他细胞分泌的因素,构成“肿瘤生成症”。我们分享了建模该动态CAF/ECM单元,可用工具和技术的挑战和机会,以及如何重塑肿瘤母体(例如,通过ECM蛋白酶)。我们认为,越来越多的有关肿瘤生成体动力学的信息可能会导致该领域成为基因组外科医学的替代策略。