未来,常规 eDNA 研究和监测将转向无 PCR 方法。如需全面了解环境 DNA 研究的各个方面,包括方法、挑战和应用,请参阅 Taberlet 等人 (2018) 的文章。可以说,近几十年来,很少有领域像 eDNA 一样对生态学产生如此迅速而深远的影响。如今,eDNA 作为一种生态工具已在全球范围内广受欢迎,涵盖了从微生物到大型动物群的所有生物多样性水平,以及所有陆地和水生生物群落。其应用范围广泛,从检测入侵物种(Dougherty 等人,2016 年)、饮食研究(Shehzad 等人,2012 年),到通过吸血无脊椎动物(如水蛭)中的 DNA 间接检测哺乳动物的非侵入性方法(Schnell 等人,2015 年),再到水生生态系统的监测和评估(Chariton 等人,2015 年;Laroche 等人,2016 年)。水生生态学家是最早采用基于 eDNA 的方法的先驱和人士之一(Ficetola 等人,2008 年;Deagle 等人,2009 年;Chariton 等人,2010 年;Hajibabaei 等人,2011 年)。如今,基于 eDNA 的方法正在世界各地得到常规应用(Cordier 等人,2021 年),欧盟的 DNAquaNet 就是明证,该项目旨在开发和应用基于 eDNA 的方法来监测欧洲的水生系统(Leese 等人,2016 年)。eDNA 研究最令人兴奋的方面之一是能够从同一样本中获取大量生态信息。例如,一位研究人员可能会检查水样中的微生物成分;其他人可以对同一样本进行分析以检测鱼类或获取浮游植物组成。尽管需要考虑初始研究的实验设计及其对后续解释的影响( Zinger 等人,2019 年),但从相同样本中“重新获取”生态数据的能力不仅凸显了基于 eDNA 方法的独特属性之一,而且还强调了生物银行( Jarman 等人,2018 年)和共享 eDNA 样本的必要性,在大多数情况下,这些样本都是使用公共资金收集的。鼓励这些方法不仅可以使研究人员能够重新使用样本进行回顾性分析,这对于监测人类活动对地球生物群落的影响至关重要,而且还为利用样本探索与最初收集目的完全无关的问题提供了机会。
科学家研究 DNA 是因为它携带着有关生物体如何生存和运作的信息。随着时间的推移,DNA 在生态学中变得越来越重要。生态学家是研究生物体与其环境之间相互作用的科学家。生态学家现在使用环境 DNA (eDNA) 来研究物种。eDNA 是留在土壤、水或沉积物中的 DNA。生物体以头发、毛皮、皮肤、尿液、唾液或血液的形式在环境中留下 DNA。eDNA 可以告诉科学家某个地区有哪些生物。它还可以帮助科学家更多地了解环境中难以观察到的稀有生物。
如今,有许多例子说明了如何成功地将环境DNA/EDNA成功用于环境监测,这不仅是一种互补方法,而且还可以替代现有方法。大多数应用程序都触及了在limnive环境中的鱼类群落,在这些环境中,也有良好且全面的参考文献用于序列数据的生物信息学分析。但是,在几个领域和应用程序中,技术未使用或测试。这样的问题,例如,是否所有关税是否同样易于使用Edna检测到的问题?鱼是(通常说的)大而移动的,因此释放大量可以捕获和分析的DNA。但是其他出租车呢?埃德娜(Edna)如何在更具挑战性的环境中起作用,例如两个物种数量都大得多,涵盖了许多不同的动物菌株,而环境不那么封闭?当将基于EDNA和基于DNA的物种鉴定用于环境监测时,还有其他问题需要突出显示和讨论。它涉及假阳性答案的风险,甚至更重要的是,伪造负面答案的风险。这两个错误都非常重要,尤其是在监测外国入侵物种方面。必须采集多少样本以及如何进行抽样 - 在生态学中长期讨论的问题,但在环境监测中却不那么突出。与其他更传统的方法相比,基于EDNA的监视如何得到验证,结果是什么样的?
由于海上能量转换器(例如,波浪和潮汐设备,海上风力涡轮机,浮动太阳能)具有影响周围海洋栖息地的潜力,监管机构通常需要进行固定前后的监测以跟踪潜在的变化。对海洋栖息地和物种进行海洋影响评估(MRE)项目(MRE)项目的常见方法包括主动和被动齿轮类型和方法。传统的主动采样方法包括底部和上层拖网,网和抓取,而被动抽样可以包括非侵入性水下视觉调查或声音声音。虽然后者很少为物种水平提供真正可靠的识别,但前者是杀死大部分捕获物的固有缺点。结合通常针对MRE部署的高能环境,抽样可能特别具有挑战性(例如,时间,成本,观察的可靠性)。环境DNA(EDNA)方法不仅可以提供更可靠的方法来检测生物体,还可以减轻这些挑战,还可以提供比传统抽样技术可节省大量成本的方法[1]。为了鉴定本地生物,每只动物都会在其环境中脱离其环境中的细胞,并从中提取DNA。在过去的十年中,这种非侵入性方法被称为Edna Metabarcoding(类似于使用宽网捕获所有内容)或EDNA分析(类似于目标的挂钩钓鱼)。虽然与Edna相关的科学和技术已应用于众多水生环境,但在水生环境中,该方法已用于检测和监测罕见[2]和/或入侵物种[3],并且在许多情况下已显示出优于其他几种抽样方法[1]。尽管Edna脱落和衰减率在生物体之间有所不同[4],但Edna社区在抽样位置内似乎稳定,并且在抽样位置内潮汐周期[5]。
自2019年以来,Banyuls Sur Mer Oceanoloical天文台的研究团队(Boss,Lecob)致力于开发自主抽样器,以自动收集,集中和提供高质量的Edna,应用于包括NG在内的大量分子分析。项目的目的是将EDNA采样器集成到小型测序仪,该测序仪提供了一种能够原位监视生物多样性的新设备。关键字
洞穴生物代表了地球上最受研究和威胁的生物多样性之一。这些物种的特征是它们独特的特征,使它们能够在地下生存,包括伸长的附属物,眼睛和色素的丧失以及代谢减少。必须监测这些物种,以减轻进一步的物种损失并保护现有的洞穴生物多样性。一种现代方法,显示出对监测和检测物种的不可思议的希望是EDNA(环境DNA)。与传统方法相比,Edna可以产生更快,更可靠和具有成本效益的结果,尤其是对于难以使用传统方法研究的物种。在这项研究中,我们评估了埃德纳(Edna)在阿拉巴马州洞穴虾(Alabamae)地下栖息地(阿拉巴马州帕拉米亚斯(Palaemonias Alabamae))中检测和监测的功效,这是一种在亨斯维尔地区发现的联邦濒危物种。
环境 DNA (eDNA) 宏条形码已成为检查鱼类群落的有力工具。在将基于 eDNA 的评估引入监管监测环境(例如欧盟水框架指令)之前,需要方法标准化。为了确保方法的准确性并满足监管标准,已经建立了各种采样、实验室和生物信息学工作流程。然而,全面监测鱼类的关键先决条件是选择合适的引物对,以准确识别给定水体中存在的鱼类。过去十年中,发表了针对不同遗传标记区域的各种鱼类特异性引物对。然而,尚未开展专门研究来评估常用鱼类引物对在评估中欧鱼类物种方面的性能。因此,我们创建了一个由 45 种中欧鱼类 DNA 组成的人工“模拟”群落,并检查了五对引物的检测能力和可重复性。我们的研究重点介绍了引物选择和生物信息学过滤对 eDNA 宏条形码结果的影响。在我们研究中评估的五对引物中,tele02(12S 基因)引物对是中欧淡水鱼 eDNA 元条形码的最佳选择。此外,MiFish-U(12S)和 SeaD NA-mid(COI)引物对表现出良好的检测能力和可重复性。然而,特异性较低的引物对(即针对脊椎动物)被发现不太可靠,并产生大量假阳性和假阴性检测。我们的研究说明了如何通过精心选择引物对和生物信息学流程使 eDNA 元条形码成为鱼类监测更可靠的工具。
环境DNA(EDNA)近年来成为补充水生淡水系统传统抽样方法的主要方法。尽管越来越多地应用Edna Metabarcoding方法,但许多发展中国家尚未将该工具完全纳入水生生物多样性的管理和监测。这项研究旨在分析Mweru-Luapula(ML)渔业的18个抽样地点首次收集的EDNA水样品,以确定侵入性和天然淡水鱼的存在和分布。这项研究进一步应用了Simpson多样性指数(SDI),以研究入侵和无侵蚀系统之间物种的多样性。环境DNA分析揭示了渔业四个层中三个层中存在侵入性帕尚种类,而在通过传统方法进行评估时,只有两个先前已知的层被侵入。此外,最初还使用EDNA检测了五种稀有物种(Marcusenius senegalensis,senegalensis,Trachurus japonicus,Labeo Nasus,Campylomormyrus Compressirostris和Synodontis Schoutedeni)。在入侵的单个采样位点记录了低SDI值。系数作为读数和物种频率之间的社会(r = 0.31; p值= 0.239)和多样性指数(r = 0.1; p -value = 0.717)没有任何重大影响。这项研究提供了一个平台,以进一步研究在全国其他渔业地区的入侵物种的存在和影响,使用在不同水深收集的Edna水样品来更新物种库存。在渔业中首次启示了意外物种,并在多个地点发现了侵入性的帕尚种类,这表明需要与传统的方法一起介绍Edna Metabarcododing,以监测外星人的入侵物种,从而有效地管理和保存淡水ML Fishery fishery fishery fishery fishery fisoticational of Zambia的威胁性生物多样性。
水的环境DNA(EDNA)抽样是对水生动物物种进行综合和无创监测的强大方法。但是,很少有关于其应用于鲸类物种的报道。2021年6月29日,一条鲸鱼(绰号为小)出现在中国广东省的Dapeng Bay。我们使用EDNA技术来获取与该鲸鱼有关的信息(例如,物种识别和食物来源),并追踪其可能的起源。四个鲸鱼线粒体序列(12S rDNA,16S rDNA,细胞色素C氧化酶亚基1和对照区)的片段是从Dapeng Bay收集的Edna的扩增子获得的;序列条形码表明这是伊甸园的鲸鱼(Balaenoptera Edeni Edeni Anderson 1879)。Analysis of potential prey species (PPS) suggested that this whale might enter Dapeng Bay while tracking prey, mainly sardines ( Sardinella lemuru , Sardinella gibbosa and Sardinella jussieui ) and anchovies ( Thryssa dussumieri , Thryssa vitrirostris and Thryssa kammalensis ).从与Dapeng Bay相邻的水域中收集的样品中检索Edna Metabarcoding数据(即Lingding Bay和Daya Bay)透露,伊甸园的鲸鱼出现在Dapeng Bay(2021年4月上旬)出现前2个月前出现在Lingding Bay外面。总体而言,这项研究表明,EDNA是一种非常有效的非侵入性调查方法,用于准确鉴定目标鲸类和猎物成分。它可用于监视受严格法律保护的Megafauna,或者用于监视未知条件的Megafauna。
我们已经使用Edna方法研究了Kriegers Flak Offshore Wind Wind Find的生物多样性,以刮擦三个风力涡轮机塔的海面下方,以及Edna样品在水柱上下的Edna样品靠近同一塔楼和离岸风电场外的水柱上部和下部的屋顶。这些刮擦也已在分类法实验室中进行了比较。最后,涡轮塔的生物社会,相关的侵蚀保护,周围的沙质底部以及在自然礁的三个位置进行了从水下无人机(Prey)研究中描述,并对物种沉积物的视觉评估及其覆盖率进行了视觉评估。ROV和刮擦是作为替代计划的潜水下台的替代者,如果无法通过正常的科学潜水调查来满足要求,则无法进行海上风电场。