分析仅限于临床领域和生物医学,心理或行为研究。如今,通过越来越多的Conumer级神经技术设备,大脑数据也越来越多地用于就业,教育和军事环境以及个人使用。在消费者空间中,信息技术公司正在开发用于用于消费者目的的大脑数据的设备和应用程序,例如认知监测,神经反馈,设备控制或其他形式的脑部计算机接口。例如,在2017年至2021年之间,Facebook开发了脑部计算机界面(BCI)研究计划,旨在构建可穿戴的BCI,使用户可以通过简单地想象语音来键入。Microsoft正在为普通人群的非侵入性交互式BCIS并行工作,而神经技术公司(例如Neuralink,Emotiv和Nemiv和kernel)的整个生态系统正在迅速出现。消费者神经技术,电子学习,数字表型,情感计算,心理学和神经元素是利用大脑数据作为商品的某些应用领域[1,2]。在教育和工作环境中,已经尝试收集和处理大脑数据以进行诸如改善学习和重新设计工作流程之类的内容。例如,去年,在中国,小学生被录取了一项试验,在该试验中,在认知任务期间记录了电脑图(EEG)数据以评估他们的注意力跨度[3]。
摘要:先前的研究已经证明了脑电图 (EEG) 在评估心理工作负荷方面的适用性。然而,开发可靠的跨任务、跨受试者和跨会话工作负荷分类模型仍然是一个挑战。在本研究中,我们使用无线 Emotiv EPOC 耳机评估了八名受试者和两项心理任务(即 n-back 和算术任务)的工作负荷。0-back 和 2-back 任务以及 1 位和 3 位加法分别被用作 n-back 和算术任务中的低和高工作负荷。使用功率谱密度作为特征,开发了一个信号处理和特征提取框架来对工作负荷级别进行分类。在 n-back 和算术任务中,会话内准确率分别达到 98.5% 和 95.5%。为了便于实时估计工作负荷,应用了快速域自适应技术,实现了 68.6% 的跨任务准确率。同样,我们在 n-back 和算术任务中分别获得了 80.5% 和 76.6% 的跨会话准确率,以及 74.4% 和 64.1% 的跨受试者准确率。尽管参与者数量有限,但该框架在跨受试者和任务方面具有很好的推广性,并为开发独立于受试者和任务的模型提供了一种有前途的方法。它还表明在认知监测中使用消费级无线 EEG 耳机实时估计工作量在实践中的可行性。
近年来,使用脑电图 (EEG) 数据和机器学习技术进行情绪分类的现象日益增多。然而,过去的研究使用的是医疗级 EEG 设置的数据,这些设置时间较长,且环境受限。本文重点介绍使用各种特征提取、特征选择和机器学习技术在效价-唤醒平面上对情绪进行分类。我们评估了不同的特征提取和选择技术,并提出了用于情绪识别的最佳特征和电极集。OASIS 图像数据集中的图像用于引发效价和唤醒情绪,并使用 Emotiv Epoc X 移动 EEG 耳机记录 EEG 数据。分析是在公开可用的数据集上进行的:DEAP 和 DREAMER 用于基准测试。我们提出了一种新颖的特征排名技术和增量学习方法来分析性能对参与者数量的依赖性。进行了留一交叉验证,以识别情绪引发模式中的受试者偏见。计算了不同电极位置的重要性,可用于设计用于情绪识别的耳机。收集的数据集和管道也已发布。我们的研究在 DREAMER 上取得了 0.905 的均方根得分 (RMSE),在 DEAP 上取得了 1.902 的均方根得分 (RMSE),在我们的价标签数据集上取得了 2.728 的均方根得分,在 DREAMER 上取得了 0.749 的得分,在 DEAP 上取得了 1.769 的得分,在我们提出的唤醒标签数据集上取得了 2.3 的得分。
近年来,使用脑电图 (EEG) 数据和机器学习技术进行情绪分类的现象日益增多。然而,过去的研究使用的是医疗级 EEG 设置的数据,这些设置时间较长,且环境受限。本文重点介绍使用各种特征提取、特征选择和机器学习技术在效价-唤醒平面上对情绪进行分类。我们评估了不同的特征提取和选择技术,并提出了用于情绪识别的最佳特征和电极集。OASIS 图像数据集中的图像用于引发效价和唤醒情绪,并使用 Emotiv Epoc X 移动 EEG 耳机记录 EEG 数据。分析是在公开可用的数据集上进行的:DEAP 和 DREAMER 用于基准测试。我们提出了一种新颖的特征排名技术和增量学习方法来分析性能对参与者数量的依赖性。进行了留一交叉验证,以识别情绪引发模式中的受试者偏见。计算了不同电极位置的重要性,可用于设计用于情绪识别的耳机。收集的数据集和管道也已发布。我们的研究在 DREAMER 上取得了 0.905 的均方根得分 (RMSE),在 DEAP 上取得了 1.902 的均方根得分 (RMSE),在我们的数据集上取得了 2.728 的价标签得分,在 DREAMER 上取得了 0.749 的得分,在 DEAP 上取得了 1.769 的得分,在我们提出的数据集上取得了 2.3 的唤醒标签得分。
以往,脑数据的应用仅限于临床领域和生物医学、心理或行为研究。如今,脑数据也越来越多地被用于就业、教育和军事领域,以及通过越来越多的消费级神经技术设备用于个人用途。在消费领域,信息技术公司正在开发利用脑数据用于消费者目的的设备和应用程序,例如认知监控、神经反馈、设备控制或其他形式的脑机接口。例如,在 2017 年至 2021 年期间,Facebook 开展了一项脑机接口 (BCI) 研究项目,旨在构建一种可穿戴 BCI,使用户只需想象语音即可打字。微软也在同时开发针对普通人群的非侵入式交互式 BCI,同时 Neuralink、Emotiv 和 Kernel 等神经技术公司的完整生态系统正在迅速崛起。消费者神经技术、电子学习、数字表型分析、情感计算、心理统计学和神经营销是利用脑数据作为商品的一些应用领域 [1、2]。在教育和工作环境中,人们尝试收集和处理脑数据,以改善学习和重新设计工作流程等。例如,去年,在中国,小学生参加了一项试验,在认知任务期间记录脑电图 (EEG) 数据以评估他们的注意力持续时间 [3]。
困倦是道路交通事故的主要原因,它会导致严重的身体伤害、死亡和重大的经济损失。为了监测驾驶员困倦程度,先前的研究使用了行为测量、车辆测量、生理测量和混合测量等各种方法。本文主要关注预测驾驶员困倦的生理方法。有几种生理方法来预测困倦。在这些方法中,脑电图是测量受试者大脑活动的非侵入性生理方法之一。从人体头皮提取的脑电信号会根据各种特征进行分析,并用于预测困倦、疲劳等各种健康应用。所提出系统的主要目标是及早高精度地预测驾驶员困倦程度,因此我们将工作分为两个步骤。第一步是收集基于脑电图的眼睛状态(睁眼和闭眼)的公开数据集,其中信号采集过程由 Emotiv EEG Neuroheadset(14 个电极)完成,并分析了各种特征工程技术和统计技术。第二步应用机器学习分类模型 K-NN 并使用基于性能的预测模型。在现有系统中,他们使用各种机器学习分类模型(如 K-NN 和 SVM)进行 EEG 眼状态分类,结果约为 80% -97%。与现有系统相比,我们提出的方法使用不同的特征工程流程和分类模型(如 K-NN)生成了更好的分类模型来预测驾驶员困倦程度,从而产生了 98% 的准确率。
背景。脑机界面(BMI)是一种接收大脑信号的设备或实验设置,对其进行分类,然后将其用作计算机命令。对哪种学习方法(深度学习,卷积网络,AI等)尚无共识和/或每种方法中的算法类型最好运行BMI。目标。这项工作的目的是建立一个低成本,便携式,易于使用和可靠的电动图像电脑图(EEG-MI)的BMI;比较不同的算法,以找到最适合这种情况的算法。方法。在这项研究中,从Physionet公共数据和使用Emotiv头戴式耳机获得的Motor Imager(MI)EEG信号都与四种机器学习算法进行了分类。这些算法是:结合线性判别分析(LDA),深神经网络(DNN),卷积神经网络(CNN)和最终riemannian最小值(RMDM)的常见空间模式(CSP)。结果。每种方法的平均准确性分别为78%,66%,60%和80%。获得了基线与运动图像(MI)比较的最佳结果。随着全球培训公共数据的,获得了86.4%至99.9%的精度。 使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。随着全球培训公共数据的,获得了86.4%至99.9%的精度。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。结论。CSP和RMDM算法产生了快速(计算时间)和有效的(成功率)工具,以实现为BMI中的深度学习算法。
脑电图设计(EEG)设计作为对基于Arduino Uno的额叶部分中脑信号活性的检测。EEG是一种用于记录人脑电活动的工具。 这项研究的目的是创建一种非临床EEG设备,该设备是便携式和低成本的。 研究程序分为三个阶段。 第一阶段是使用Eagle应用程序设计脑电图系统。 第二阶段是创建一个由脑电图系统,电源,Arduino Uno和两个电极组成的EEG系统。 第三阶段是测试EEG系统,其中包括测试仪器加固,低通滤波器测试,电源测试,ADC ARDUINO一致性测试和EEG性能的初步测试以记录大脑信号。 基于测试结果获得了51次仪器加固,平均准确率为99.09%。 同时,获得的截止频率为70 Hz。 使用原型单电极EEG和EEG标准情绪EPOC通过在FP1和A2(地面)点上放置电极,大脑信号测量之间的比率是几乎相同的模式。 因此可以得出结论,创建的EEG单电极系统已成功地用于记录额叶区域的大脑活动。 关键字:Arduino Uno,EEG,额叶,大脑信号EEG是一种用于记录人脑电活动的工具。这项研究的目的是创建一种非临床EEG设备,该设备是便携式和低成本的。研究程序分为三个阶段。第一阶段是使用Eagle应用程序设计脑电图系统。第二阶段是创建一个由脑电图系统,电源,Arduino Uno和两个电极组成的EEG系统。第三阶段是测试EEG系统,其中包括测试仪器加固,低通滤波器测试,电源测试,ADC ARDUINO一致性测试和EEG性能的初步测试以记录大脑信号。基于测试结果获得了51次仪器加固,平均准确率为99.09%。同时,获得的截止频率为70 Hz。使用原型单电极EEG和EEG标准情绪EPOC通过在FP1和A2(地面)点上放置电极,大脑信号测量之间的比率是几乎相同的模式。因此可以得出结论,创建的EEG单电极系统已成功地用于记录额叶区域的大脑活动。关键字:Arduino Uno,EEG,额叶,大脑信号
摘要:对眼动和视觉状态的歧视是研究的一流领域,迫切需要非手动的基于EEG的轮椅控制和导航系统。本文提出了一种新型系统,该系统利用脑部计算机界面(BCI)来捕获人类受试者的电子摄影(EEG)信号,而眼睛运动并随后通过应用随机森林(RF)分类算法将其分为六个类别。rf是一种合奏学习方法,它构建了一系列决策树,每棵树都会在其中进行类预测,而类别预测数量最多的类成为模型的预测。根据受试者眼睛的位置定义了拟议的随机森林脑 - 计算机界面(RF-BCI)的类别:开放,闭合,左,左,右,向上和向下定义。RF-BCI的目的应用作基于EEG的控制系统,用于驱动机电轮椅(康复设备)。已使用包含来自10名不同患者的219个记录的数据集对所提出的方法进行了测试。BCI实施了EPOC Flex头盖系统,其中包括32个盐毡传感器,用于捕获受试者的EEG信号。每个传感器每秒捕获了四个不同的脑波(Delta,Theta,Alpha和Beta)。然后,将这些信号分为4秒的窗户,每条记录512个样品,并为每个EEG节奏提取频带能量。实验结果表明,与获得6级分类的其他方法相比,RF算法的表现优于其他方法和高度准确性(85.39%)。将所提出的系统与幼稚的贝叶斯,贝叶斯网络,K-Nearest邻居(K-NN),多层感知器(MLP),支持向量机(SVM),J48-C4.5决策树和袋装分类算法进行了比较。此方法利用了从Epoc Epoc Flex可穿戴式录制设备中获得的高空间信息,并成功检查了该设备用于BCI轮椅技术的潜力。
鉴于任何组织中人类GIS/图像分析师数量有限,其时间和组织资源的使用很重要,尤其是考虑到大数据应用方案,当组织可能被大量地理空间数据淹没时。目前的手稿专门用于实验研究的描述,概述了人类计算机共生的概念,其中计算机执行任务(例如在大图像数据集上的分类),以及,依次进行分析,人类通过脑电脑接口(BCIS)进行分析,以对机器学习困难的这些图像进行分类。添加BCI分析是利用大脑更好地回答问题的能力:“该图像中的对象是要寻找的对象吗?”为了确定这种系统的可行性,对监督的多层卷积神经网络(CNN)进行了训练,以检测卫星图像数据中的“船”和“无船”之间的差异。然后将一个预测层添加到经过训练的模型中,以输出给定图像在这两个分类中的每个分类中的概率。如果概率在以0.5为中心的高斯分布的平均值的一个标准偏差之内,则将它们存储在单独的数据集中,以使用Psyhopy实施的快速串行视觉呈现(RSVP),使用低成本的情绪“ Insigh” EEG BCI BCI HEADSET对人类分析师实施。在RSVP阶段,可以顺序证明每分钟数百张图像。以这样的速度,人类分析师无法就每个图像中的内容做出任何有意识的决定。但是,耳机仍然可以检测到潜意识的“ aha-moment”。这些时刻的发现是通过事件相关电位(ERP)(特别是p300 ERP)的说明来解析的。如果生成了p300 ERP来检测船,则相关图像将移至其应有的指定数据集;否则,如果尚不清楚图像分类,则将其预留在另一次RSVP迭代中,其中每次都会增加分析师观察每个图像的时间。如果分类在大量的RSVP迭代后仍不确定,则所讨论的图像将位于其较大图像场景的网格矩阵中。然后将相邻的图像添加到网格上的图像中,然后将其添加到演示文稿中,以通过扩展的视野为分析师提供更多上下文信息。如果分类仍然不确定,则提供了视野的最终扩展。最后,如果以某种方式不确定图像的分类,则将图像存储在存档数据集中。