鉴于任何组织中人类GIS/图像分析师数量有限,其时间和组织资源的使用很重要,尤其是考虑到大数据应用方案,当组织可能被大量地理空间数据淹没时。目前的手稿专门用于实验研究的描述,概述了人类计算机共生的概念,其中计算机执行任务(例如在大图像数据集上的分类),以及,依次进行分析,人类通过脑电脑接口(BCIS)进行分析,以对机器学习困难的这些图像进行分类。添加BCI分析是利用大脑更好地回答问题的能力:“该图像中的对象是要寻找的对象吗?”为了确定这种系统的可行性,对监督的多层卷积神经网络(CNN)进行了训练,以检测卫星图像数据中的“船”和“无船”之间的差异。然后将一个预测层添加到经过训练的模型中,以输出给定图像在这两个分类中的每个分类中的概率。如果概率在以0.5为中心的高斯分布的平均值的一个标准偏差之内,则将它们存储在单独的数据集中,以使用Psyhopy实施的快速串行视觉呈现(RSVP),使用低成本的情绪“ Insigh” EEG BCI BCI HEADSET对人类分析师实施。在RSVP阶段,可以顺序证明每分钟数百张图像。以这样的速度,人类分析师无法就每个图像中的内容做出任何有意识的决定。但是,耳机仍然可以检测到潜意识的“ aha-moment”。这些时刻的发现是通过事件相关电位(ERP)(特别是p300 ERP)的说明来解析的。如果生成了p300 ERP来检测船,则相关图像将移至其应有的指定数据集;否则,如果尚不清楚图像分类,则将其预留在另一次RSVP迭代中,其中每次都会增加分析师观察每个图像的时间。如果分类在大量的RSVP迭代后仍不确定,则所讨论的图像将位于其较大图像场景的网格矩阵中。然后将相邻的图像添加到网格上的图像中,然后将其添加到演示文稿中,以通过扩展的视野为分析师提供更多上下文信息。如果分类仍然不确定,则提供了视野的最终扩展。最后,如果以某种方式不确定图像的分类,则将图像存储在存档数据集中。
主要关键词