当我们人类旅行时,我们的微生物就会出现。这些可能是无害的,但也可能是致病性的,并且通过在客舱中触摸表面或呼吸气溶胶来扩散。作为SARS-COV-2的大流行,这些环境显示出感染传播的风险。为了降低风险,在许多地方都采用了诸如戴着口罩和距离之类的对策,但具有重大的社会影响。然而,下一个大流行将会来,需要降低风险的其他对策,以确保通勤者安全并减少微生物和病原体的传播,但对通勤者的日常生活的影响也尽可能小。本综述描述了世界各地地铁的细菌微生物组,主要以人为相关的属为特征。我们强调公共交通中与医疗保健相关的Eskape病原体,引入了最先进的方法,以检测常见的微生物和潜在病原体,例如LAMP和下一代测序。此外,我们将可以在公共交通系统中部署的可能对策描述为抗菌表面或使用等离子体的空气灭菌。在公共交通中通勤可能会有感染的风险。可以通过有效的检测方法,微生物减少系统来提高旅行者的安全性,但重要的是通过手动卫生和常识性卫生指南来实现。
摘要:根据联合国2030年议程,可持续发展目标之一是确保可持续的消费和生产模式。确保食品安全的需求包括除了微生物危害,对抗菌抗菌(AMR)细菌的担忧。食品工业中抗性细菌的出现本质上是由于滥用抗菌药物的滥用,有时是不正确的。尽管在欧洲不允许,但通常会施用抗菌剂来促进动物的生长。每次使用抗菌剂时,都会对AMR细菌施加选择性压力。此外,AMR基因可以通过消耗肉类抗性细菌来传播给人类,该细菌突出了抗菌耐药性的一个健康维度。此外,通过抗菌管理的建议调节适当使用抗菌剂来确保效率和最佳治疗感染的可能结果。目前的手稿旨在使艺术的当前状态有关AMR细菌的传播,尤其是耐甲氧西林的金黄色葡萄球菌,产生ESBL的肠细菌科和耐Vansomycin抗Vansomycin的肠occoccoccus spp。全球最消耗的。
摘要:耐多药微生物的出现和传播对全球动物和人类健康构成了严重威胁,因为它们对常规抗菌治疗的反应性较低。耐多药微生物感染的发病率和死亡率较高,经济损失巨大。目前,抗菌肽和 CRISPR/Cas9 系统被探索作为替代疗法来规避耐多药菌的挑战。抗菌肽是从所有生物体中提取的小分子量阳离子肽。它是一种很有前途的候选药物,可通过直接杀死微生物或间接调节先天免疫系统来治疗耐多药微生物。CRISPR/Cas9 系统是另一种用于管理耐多药微生物感染的新型抗菌替代品。它是一种多功能的基因编辑工具,利用工程化的单向导 RNA 进行靶基因识别,利用 Cas9 酶破坏靶核酸。 CRISPR/Cas9 系统和抗菌肽均已成功用于治疗由 ESKAPE 病原体引起的院内感染,这些病原体对各种抗菌药物产生了耐药性。尽管抗菌肽和 CRISPR/Cas 系统在多重耐药性微生物治疗中发挥着宝贵作用,但它们都存在各种局限性,如毒性、不稳定性以及制造成本高。因此,本综述详细阐述了 CRISPR/Cas9 系统和抗菌肽在应对多重耐药性微生物感染挑战中的作用、其局限性以及在临床应用中的前景。关键词:抗菌肽、临床应用、CRISPR/cas 系统、多重耐药性生物
生物膜(BF)生产代表了一种细菌在不利条件下生存并增加其在宿主中的生存成功的策略[1]。不利的疾病可以诱导细菌从自由浮动(浮游生物)转化为梗塞细胞,从而获得粘附,成长和形成在生物或非生物表面上的社区的能力[2,3]。这种生理代谢的变化通过特定的细胞 - 细胞通信机制(称为Quorum Sensing(QS)[4])影响整个细菌群落。因此,细菌群体将其代谢活性与细胞外聚合物物质(EPS)分泌,包括脂质,多糖,蛋白质,细胞外核酸(EDNA)和离子[5] [5]。在此细胞外基质中,细菌会增加对干燥,抗菌剂和宿主免疫系统作用的耐药性[6]。这种控制的合作经常涉及不同的细菌物种,导致多数菌BF [7-10]。BFS中的细菌在生长,毒力,持久性和抗菌耐药性(AMR)方面获得了共同的好处[11]。由于水平基因转移的频率和速度较高,BF细胞外基质可以视为抗生素耐药基因扩散的热点[12]。因此,BFS可以充当多种耐药性(MDR)细菌的储层,通常与严重疾病和死亡有关[11]。疾病控制和预防中心估计每年有超过200万个与MDR细菌有关的死亡和23,000例死亡[13]。其中,eSkape(肠球菌肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,acinetobacter baumannii,baumannii,pseudomonaseudomonaseudomonaseuginosa和entobacter coptem 已包括六种高毒和抗生素的MDR细菌。 与相关的感染已包括六种高毒和抗生素的MDR细菌。与
ISI索引/引用期刊中的出版物出版物: - dobre,例如,Nichita L,Popp C,Zurac S,Neagu M.,2024。评估健康皮肤,良性NEVI和皮肤黑色素瘤中RAS-RAF-MAPK途径突变状态:使用液滴数字PCR进行试验研究。国际分子科学杂志。25(4):2308。 doi:10.3390/ijms25042308。- 康斯坦丁M.,Chifiriuc M.C.,Mihaescu G.,Vrancianu C.O.,Dobre E.G.,Cristian R.E.,Bleotu C.,Bertesteanu S.V.,Grigore R.,Serban B.,Cirstoiu C.,2023年。头颈癌对口腔失调和HPV感染的影响:从分子和细胞机制到早期诊断和治疗。肿瘤学领域。18:13:1273516。 doi:10.3389/fonc.2023.1273516。- Dobre E. -G。,Surcel M.,Constantin C.,Ilie M.A.,Caruntu A.,Caruntu C.,Neagu M.,2023年。一目了然的皮肤癌病理生物学:专注于成像技术及其在临床队列中提高诊断和监测的潜力。国际分子科学杂志。24(2):1079。- Dobre E. -G.,Constantin C.,Neagu M.,2022。皮肤癌研究是数字化的:在液滴中寻找生物标志物。个性化医学杂志。12(7):1136。- Dobre E. -G。,Constantin C.,Costache M.,Neagu M.,2021。对皮肤黑色素瘤中的个性化方法审问表观基因组。个性化医学杂志。11(9):901。-Vrancianu C.O.,Dobre E.G.,Gheorghe I.,Barbu I.,Cristian R.E.,Chifiriuc M.C.,2021。微生物。目前和未来的观点对产生甲状腺素酶的肠杆菌感染的治疗选择。9(4):730。-Vrancianu C.O.,Gheorghe I.,Dobre E. -G。,Barbu I.C.,Cristian R.E.,Popa M.,Lee S.H.,Limban C.,Vlad I.M.,Chifiriuc M.C.,2020年,2020年。对抗产生埃斯卡普病原体的β-内酰胺酶的新兴策略。国际分子科学杂志。21(22):8527。- Dobre E. -G。,Dinescu S.,Costache M.,2020。连接缺失的点:NCRNA是乳腺癌治疗敏感性的关键调节剂。癌症。12(9):2698。
噬菌体,侵入细菌细胞的病毒是生物圈中最丰富的生物。噬菌体包括具有双链DNA(最常见),单链DNA,单链RNA和双链RNA(最不常见)的病毒。大多数病毒体(96%)是尾巴的;其他类型是立方体,丝状或多态性。噬菌体基因组是由于高频率的水平遗传交换和重组而多样化和普遍的镶嵌性。噬菌体可能具有裂解或裂解生命周期。它们附着在特定细菌上,并通过酶内olysins和holins杀死,而不会因宿主特异性而影响共生微生物。有一个恒定的“进化武器竞赛”,导致竞争性细菌噬菌体的进化。正在开发许多多种多样和复杂的细菌防御机制,以抑制噬菌体生命周期的各个阶段。同时,噬菌体也发展为克服这些细菌防御。正在开发基于噬菌体的治疗方法,其中单噬菌体,噬菌体鸡尾酒,噬菌体衍生的酶,噬菌体与抗生素结合使用,而转基因噬菌体可能有用。这对于用多药耐药(MDR)病原体以及去除生物膜的感染治疗感染可能很有用。新生儿(2023):10.5005/jp-journals-11002-0078Keywords: Abi-associated enzymes, Abortive infection, Adsorption block, Bacteriophage, Bacteriophage exclusion system, Biofilms, Bradley's classification, Carjivirus communis , Caudovirales, Chromosomal islands, Contractile tails, Cosmids, CrAssphage, CRISPER-cas bacterial immune system, Darwinian principles, Double-stranded DNA, Destruction of phage DNA after injection, Diversity-generating retroelements, dsDNA, Endolysin, Enterobacteria P4-like prophages, ESKAPE, Evolutionary arms race, Glucosyl-hydroxymethylcytosine, Helper proteins, Human phageome, Hydroxymethylcytosine, Infant, Lactococcus phage c2, Lit activator gol peptide, Long non-contractile tails, Lytic cycle, Lysogenic cycle, Metagenomics, Mosaicism, MS2 coat, Mycoplasma phage P1, Myoviridae, Neonate, Newborn, P2-like prophages, Pasteurella phage F108, Penetration block, Phage display, Phagemid, Phage coevolution, Phage cocktail, Phage terminase small subunit, Phage anti-restriction-induced system, Phage ecology, Podoviridae, Polyphage, Prophage, Prokaryote viruses, Prokaryotic argonautes, Pseudolysogenic cycle, Receptor, Receptor-binding proteins, Restriction-modification systems, RexAB system, Retrons, Short tails, Siphoviridae, ssRNA, Temperate phage, Toxin-antitoxin systems, Transduction,有毒的噬菌体。
背景:国际空间站(ISS)证明了人类在太空中的成就 - 19个口粮。尽管其高度控制的环境,其特征是微重力,CO 2水平升高和20个太阳辐射,但微生物却占据了独特的利基。这些微生物居民在影响21的船上的健康和福祉方面发挥了重要作用。在我们的研究中特别感兴趣的一种微生物是22个肠杆菌Bugandensis,主要在包括人类胃肠道在内的临床标本中发现,还有23个据报道具有致病性状,导致了很多感染。24结果:与地球对应物不同,ISS E. bugandensis菌株表现出了抗性机制,可在Eskape病原体组中对其进行分类,这是一群因其对抗菌治疗的强大26耐药性而识别的病原体。在两年的微生物跟踪1个任务中,从ISS内的各个位置隔离了12个多药物27耐药e.bugandensis。与陆地菌株相比,我们已经进行了一项全面的28项研究,以了解ISS衍生的E. bugandensis的基因组复杂性,其中29次敏锐地关注与临床感染相关的人。我们揭示了关键基因的进化轨迹,尤其是那些有助于功能适应和潜在抗菌耐药性的轨迹。我们研究的假设中心31是,与地球上任何不同的空间环境应力的奇异性质可能驱动这些基因组适应。44扩展了我们的调查,随着时间的推移,我们精心绘制了整个ISS的bugandensis的患病率和33个分布。这种时间分析提供了对空间中Bugandensis的持续性,34个继承和潜在殖民的潜在模式的见解。此外,通过利用先进的35种分析技术(包括代谢建模),我们跨越了多个任务和空间位置的ISS中的36 E. bugandensis,探究了与36 E. bugandensis一起研究。这种探索揭示了复杂的微生物37相互作用,为ISS内的微生物生态系统动力学提供了一个窗口。38结论:我们的综合分析不仅阐明了这些相互作用的雕刻微生物潜水器的方式-39个性,而且还阐明了可能有助于在40 ISS环境中进行主导和继承的因素。这些发现的含义是两个方面。首先,他们阐明了微生物行为,41适应和在极端孤立的环境中的进化。其次,他们强调了对强大的预防措施的需求,从而通过减轻与潜在的致病43威胁相关的风险来确保宇航员的健康和安全。
对现有抗感染药物具有耐药性的感染的蔓延对人类健康构成了严重威胁。世卫组织预测,在不到 30 年的时间里,微生物耐药性将成为导致死亡的主要原因。然而,即将获批用于治疗的新型抗感染药物或目前正在开发的药物却很少。为了对抗耐药性微生物,发现和验证新靶点是非常必要的,只有具有新作用模式且能够摆脱现有耐药机制的创新药物才能成为有效的解决方案,以对抗耐药性感染的持续出现和蔓延。本期特刊共包含 11 篇完整的研究文章、简短通讯和评论,可让您一窥致力于微生物耐药性的药物化学研究的最新进展。在本文提出的主题中,细菌对现有抗生素的耐药性占了很大一部分,科学界正在努力寻找新的抗生素来克服细菌的耐药性。 Seyler 等人的论文重点关注了生物膜对耐药性感染的可能性 [ 1 ]。生物膜确实是控制耐药菌株的一个创新靶点。作者揭示了新的抗感染分子,它通过靶向调节氨酰-tRNA 合成酶和氨基酸代谢基因表达的 tRNA 依赖性调控 T 盒基因来抑制生物膜生长。通过计算机筛选鉴定出活性分子,并在体内进行验证,结果显示,它们对生物膜中金黄色葡萄球菌的生长抑制作用比万古霉素强 10 倍。此外,对于鉴定出的化合物,与庆大霉素和利福平联合使用时检测到了协同作用。选定的靶点和获得的结果强调了靶向作用于人类宿主中不存在但对细菌细胞生存必不可少的关键和特定细菌功能的重要性。 T-box 是一个独特的靶点,可用于开发针对致命性和耐药性革兰氏阳性病原体的小分子抗菌生物膜疗法。在论文中,Hennessen 等人讨论了氨基四环素(一种生物活性 NP 氯苯那敏的生物合成衍生物)克服已知细菌耐药机制的能力 [2]。氨基四环素是一种广谱抗菌药,可有效对抗 ESKAPE 组临床相关细菌。研究了这种非典型四环素逃避常见耐药机制(即外排过程)的能力,并针对大量耐多药 (MDR) 尿路致病临床分离株进行了验证。该分子是一种有希望开发成未来疗法的候选药物。Kavaliauskas 等人研究了金黄色葡萄球菌的抗菌素耐药性 [3]。作者讨论了一系列 5-硝基-2-噻吩甲醛衍生物。因此,对于最活跃的分子,预测了基于计算机结构的药理特性和毒性。在生物测定中,该化合物显著损害了金黄色葡萄球菌生物膜的完整性,显示出对多药耐药金黄色葡萄球菌的良好抗菌活性。所得结果表明,所鉴定的铅作为万古霉素耐药金黄色葡萄球菌 (VRSA) 靶向抗菌剂具有治疗潜力。