湿度是空气中的水蒸气量。如果空气中有很多水蒸气,则湿度将很高。湿度越高,外面感觉越湿。相对湿度是实际上空气中的水蒸气的量,其表示为空气可以在相同温度下容纳的最大水蒸气量的百分比。在寒冷的-10摄氏度(华氏14度)上考虑空气。在该温度下,空气最多可以容纳每立方米的2.2克水。因此,如果摄入-10摄氏度时,每立方米有2.2克水,我们的相对湿度很不舒服。如果在-10摄氏度的空气中有1.1克水,我们的相对湿度为50%。
本文介绍了 DeepFLASH,一种用于基于学习的医学图像配准的高效训练和推理的新型网络。与从高维成像空间中的训练数据中学习空间变换的现有方法相比,我们完全在低维带限空间中开发了一种新的配准网络。这大大降低了昂贵的训练和推理的计算成本和内存占用。为了实现这一目标,我们首先引入复值运算和神经架构表示,为基于学习的配准模型提供关键组件。然后,我们构建了一个在带限空间中完全表征的变换场的显式损失函数,并且参数化要少得多。实验结果表明,我们的方法比最先进的基于深度学习的图像配准方法快得多,同时产生同样精确的对齐。我们在两种不同的图像配准应用中展示了我们的算法:2D 合成数据和 3D 真实脑磁共振 (MR) 图像。我们的代码可以在https://github.com/jw4hv/deepflash上找到。
在量子计算机上可验证的较低复杂度。然而,量子电路 (QC) 的 QIP 体现仍不清楚,更不用说对 QIP 电路的 (彻底) 评估,特别是在 NISQ 时代的实际环境中,通过混合量子经典管道将 QIP 应用于 ML。在本文中,我们从头开始精心设计 QIP 电路,其复杂性与理论复杂性一致。为了使模拟在经典计算机上易于处理,特别是当它集成在基于梯度的混合 ML 管道中时,我们进一步设计了一种高效的模拟方案,直接模拟输出状态。实验表明,与之前的电路模拟器相比,该方案将模拟速度提高了 68k 倍以上。这使我们能够对典型的机器学习任务进行实证评估,从通过神经网络的监督和自监督学习到 K 均值聚类。结果表明,在量子比特足够的情况下,典型量子机制带来的计算误差一般不会对最终的数值结果产生太大影响。然而,某些任务(例如 K-Means 中的排序)可能对量子噪声更加敏感。
摘要:寻找新的机制解决方案以应对生物催化挑战是酶进化适应以及设计新催化剂的关键。最近人造物质被释放到环境中,为观察生物催化创新提供了动态试验场。用作杀虫剂的磷酸三酯最近才被引入环境中,而它们并没有天然对应物。为了应对这一挑战,酶已迅速进化以水解磷酸三酯,并趋向于相同的机制解决方案,即需要二价阳离子作为催化的辅助因子。相比之下,先前发现的宏基因组混杂水解酶 P91(乙酰胆碱酯酶的同源物)实现了由金属独立的 Cys-His-Asp 三联体介导的缓慢磷酸三酯水解。在这里,我们通过对 P91 进行定向进化来探究这种新催化基序的可进化性。通过将聚焦库方法与液滴微流体的超高通量相结合,我们仅通过两轮进化就将 P91 的活性提高了约 360 倍(达到 ak cat / KM ≈ 7 × 10 5 M − 1 s − 1 ),可与自然进化的金属依赖性磷酸三酯酶的催化效率相媲美。与其同源物乙酰胆碱酯酶不同,P91 不会遭受自杀抑制;相反,快速的去磷酸化速率使共价加合物的形成而不是水解速率成为限制因素。定向进化改进了这一步骤,中间体的形成速度提高了 2 个数量级。将聚焦的组合库与液滴微流体的超高通量相结合,可以用于识别和增强自然界中尚未达到高效率的机制策略,从而产生具有新型催化机制的替代试剂。■ 简介
最近,有效的视觉变压器表现出出色的性能,并且在资源受限的范围内延迟较低。通常,他们在宏观水平上使用4×4贴片嵌入式和4阶段结构,同时在微观级别利用多头配置的同时注意力。本文旨在解决记忆效率高的人中所有设计级别的计算重复。我们发现,使用较大的修补茎不仅降低了内存访问成本,而且还通过利用令牌表示,从早期阶段降低了空间冗余,从而实现了态度性能。fur-hoverore,我们的初步分析表明,在早期阶段的注意力层可以用会议代替,并且后期阶段的几个注意力头在计算上是多余的。为了处理这一点,我们介绍了一个单头注意模块,该模块固有地预先预先冗余,并同时通过相结合的全局和本地信息来提高准确性。在解决方案的基础上,我们引入了Shvit,这是一种单头视觉变压器,获得了最先进的速度准确性权衡。例如,在ImagEnet-1k上,我们的SHVIT-S4在GPU,CPU和iPhone12移动设备上比MobileVitV2×1.0快3.3×,8.1×和2.4倍,而同时更准确。用于使用Mask-RCNN头对MS Coco进行的对象检测和实例分割,我们的模型分别在GPU和移动设备上表现出3.8×和2.0×下骨架潜伏期时,可以与FastVit-SA12进行比较。
纠缠是量子技术的关键资源,是令人兴奋的多体现象的根源。然而,当现实世界的量子系统与其环境相互作用时,量化其两部分之间的纠缠是一项挑战,因为后者将跨边界的经典关联与量子关联混合在一起。在这里,我们使用混合态的算子空间纠缠谱有效地量化了这种现实开放系统中的量子关联。如果系统具有固定电荷,我们表明谱值的子集编码了不同跨边界电荷配置之间的相干性。这些值的总和,我们称之为“配置相干性”,可用作跨边界相干性的量化器。至关重要的是,我们证明了对于纯度非增映射,例如具有 Hermitian 跳跃算子的 Lindblad 型演化,配置相干性是一种纠缠度量。此外,可以使用状态密度矩阵的张量网络表示有效地计算它。我们展示了在存在失相的情况下在链上移动的无自旋粒子的配置相干性。我们的方法可以量化广泛系统中的相干性和纠缠,并激发有效的纠缠检测。
已注册的账户可选择 Merrill 指定为税收效率管理风格经理策略或风格经理策略的可用风格经理策略。风格经理策略是一种管理策略,以税收效率管理作为其投资组合管理投资方法的目标。在这种策略中,投资经理采用各种税收效率管理方法,例如寻求机会出售亏损的证券,并在出售日期后至少 30 天内将收益投资于与策略一致的替代证券。
单粒子冷冻电子显微镜(Cryo-EM)已成为主流结构生物学技术之一,因为它具有确定动态生物分子的高分辨率结构的能力。但是,冷冻EM数据获取仍然是昂贵且劳动力密集的,需要大量的专业知识。结构生物学家需要一种更高效,更客观的方法来在有限的时间范围内收集最佳数据。我们将Cryo-EM数据收集任务制定为这项工作中的优化问题。目标是最大化指定期间拍摄的好图像的总数。我们表明,强化学习是一种有效的方法来计划低温EM数据收集,并成功导航异质的低温EM网格。我们开发的AP-PRACH,CRYORL,在类似设置下的数据收集的平均用户表现出了更好的表现。
基于锚点的大规模多视图聚类因其在处理海量数据集方面的有效性而引起了广泛关注。然而,当前的方法主要通过探索锚点图或投影矩阵之间的全局相关性来寻找用于聚类的共识嵌入特征。在本文中,我们提出了一种简单而有效的可扩展多视图张量聚类(S 2 MVTC)方法,我们的重点是学习视图内和跨视图的嵌入特征的相关性。具体而言,我们首先通过将不同视图的嵌入特征堆叠到张量中并旋转它来构造嵌入特征张量。此外,我们构建了一种新颖的张量低频近似(TLFA)算子,它将图相似性结合到嵌入特征学习中,有效地实现不同视图内嵌入特征的平滑表示。此外,对嵌入特征应用共识约束以确保视图间语义一致性。在六个大规模多视图数据集上的实验结果表明,S 2 MVTC 在聚类性能和 CPU 执行时间方面明显优于最先进的算法,尤其是在处理海量数据时。S 2 MVTC 的代码已公开发布在 https://github.com/longzhen520/S2MVTC。
在陆地机器人自主导航的背景下,创建用于代理动力学和感官的现实模型是机器人文献和商业应用中的广泛习惯,在该习惯中,它们用于基于模型的控制和/或用于本地化和映射。另一方面,较新的AI文献是在模拟器或Ai-thor的模拟器或端到端代理上进行训练的,在这种模拟器中,重点放在照相现实渲染和场景多样性上,但是高效率机器人动作具有较少的特权角色。所得的SIM2REAL差距显着影响训练有素的模型转移到真正的机器人平台。在这项工作中,我们探讨了在设置中对代理的端到端培训,从而最大程度地减少了Sim2real Gap,在感应和驱动中。我们的代理直接预测(离散的)速度命令,这些命令是通过真实机器人中的闭环控制维护的。在修改的栖息地模拟器中鉴定并模拟了真实机器人的行为(包括底盘的低级控制器)。探视和定位的噪声模型进一步促进了降低SIM2REAL间隙。我们在实际导航方案上评估,探索不同的本地化和点目标计算方法,并报告与先前的工作相比的性能和鲁棒性的显着增长。