协作感知使每个代理人通过与其他代理人的传统消息交换来证明其感知能力。它固有地归结为感知和沟通成本之间的基本权衡。为了解决这个瓶颈问题,我们的核心思想是从两个关键方面优化协作序列:表示和选择。提出的基于密码的消息代表可以传输整数代码,而不是高维特征图。提出的信息填充消息选择优化了本地消息,以共同填充每个代理的信息需求,防止多个代理之间的信息溢出。通过对这两种设计进行介绍,我们提出了一种新颖的沟通效率协作感知系统,它大大提高了感知 - 交流权衡权衡,并且既包含了同性恋和异构协作环境。我们在现实世界数据集(DAIR-V2X)和新的仿真数据集OPV2VH+中评估了代码填充。结果表明,代码填充的表现超过了sota,其中2comm在dair-v2x/opv2vh+上具有1,333/1,206×较低的通信量。我们的代码可从https://github.com/phyllish/ codefilling获得。
通过预训练的视觉模型进行测试时间适应,引起了越来越多的关注,以应对测试时间的分离转移。尽管事先实现了非常有前途的性能,但它们会进行密集的计算,这与测试时间适应非常不规则。我们设计了TDA,这是一种无训练的动态适配器,可通过视觉模型进行有效,有效的测试时间适应。tda可与轻巧的键值缓存一起使用,该缓存维持具有很少射击伪标签的dy-namic队列作为值,而相应的测试样本特征则是键。杠杆键值缓存,TDA允许通过渐进式伪标签的细化逐渐调整数据,而逐步测试数据,而不会产生任何反向传播。此外,我们引入了负伪标记,即当模型不确定其伪标签预测时,通过将伪标签分配给某些负类时,可以减轻伪标签噪声的不利影响。在两个基准上进行的广泛实验表明,与最先进的艺术品相比,TDA的实体有效性和效率。该代码已在https://kdiaaa.github.io/tda/中发布。
主动深度传感可实现强大的深度估计,但通常受感应范围的限制。天真地增加光学能力可以改善传感范围,但对许多应用(包括自主机器人和增强现实)的视力安全关注。在本文中,我们提出了一个自适应的主动深度传感器,该传感器可以共同介绍范围,功耗和眼部安全。主要观察结果是,我们不需要将光模式投影到整个场景,而只需要在关注的小区域中,在应用程序和被动立体声深度所需的深度失败的情况下。理论上将这种自适应感知方案与其他感应策略(例如全帧投影,线扫描和点扫描)进行了比较。我们表明,为了达到相同的最大感应距离,提出的方法在最短(最佳)眼部安全距离时会消耗最小的功率。我们用两个硬件原型实现了这种自适应感测方案,一个具有仅相位空间光调制器(SLM),另一个带有微电动机械(MEMS)镜像和衍射光学元素(DOE)。实验结果验证了我们方法的优势,并证明了其能力自适应地获得更高质量的几何形状。请参阅我们的项目网站以获取视频结果和代码:
摘要:本研究探索了EEG信号中突出的信号,并提出了一种基于EEG信号识别情绪体验和心理状态的有效方法。首先,使用PCA将数据的维度从2K和1K降低到10和15,同时提高了性能。然后,针对构建基于EEG的识别方法的高质量训练数据不足的问题,提出了一种多生成器条件GAN,通过使用不同的生成器来生成覆盖实际数据更完整分布的高质量人工数据。最后,为了进行分类,引入了一种新的混合LSTM-SVM模型。所提出的混合网络在EEG情绪状态分类中获得了99.43%的整体准确率,在识别心理状态方面表现出色,准确率达到99.27%。所介绍的方法成功地结合了机器学习的两个突出目标:高精度和小特征尺寸,并展示了在未来分类任务中利用的巨大潜力。
荞麦 (Fagopyrum tataricum (L.) Gaertn.) 是一种特殊的作物,以其显著的健康益处、高含量的有益多酚和无麸质特性而闻名,使其成为备受追捧的功能性食品。它的自花授粉能力和对恶劣环境的适应性进一步增强了它作为可持续农业选择的潜力。为了利用其独有的性状,荞麦的遗传转化至关重要。在本研究中,我们优化了农杆菌介导的荞麦愈伤组织转化方案,使再生植物的转化率达到约 20%。通过成功的 GUS 染色、GFP 表达以及通过 FtPDS 基因失活产生白化植物,证实了该方案的有效性。这些结果验证了基因操作的可行性,并强调了荞麦性状增强的潜力。
摘要本文介绍了GSCORE,这是一个硬件加速器单元,该单元有效地执行了使用算法优化的3D Gauss-ian剥落的渲染管道。GSCORE基于对基于高斯的辐射场渲染的深入分析的观察,以提高计算效率并将技术带入广泛采用。在此过程中,我们提出了几种优化技术,高斯形状感知的交叉测试,分层排序和下图跳过,所有这些都与GSCORE协同集成。我们实施了GSCORE的硬件设计,使用商业28NM技术进行合成,并评估具有不同图像分辨率的一系列合成和现实世界场景的性能。我们的评估要求表明,GSCORE在移动消费者GPU上实现了15.86倍的速度,其面积较小,能源消耗较低。
图像包含大量冗余信息,使其具有挑战性地在大规模上从它们中有效地了解它们。最近的工作通过在视觉语言构想学习期间掩盖图像贴片来解决这个问题[15,33,36,70]。一种简单的方法是随机放下大部分斑块,通过降低每个训练迭代中的计算成本和记忆使用量,从而更有效地培训训练[36]。替代策略是掩盖语义相关的贴片[15,33,70],例如属于同一对象的贴片。这迫使学习的模型预测从上下文中描述缺少场景结构的单词,从而改善了学识渊博的表示。但是,这种方法需要一种单独的机制来将语义重新贴定的补丁分组在一起,这为学习过程增加了相当大的复杂性,并且计算上很昂贵。我们提出了一种简单的掩盖策略,用于避免这些缺点的多模式对比学习。在训练期间,我们掩盖了斑块的随机簇(图1)。对于此聚类,我们将Patches的原始RGB值用作特征表示。我们的方法利用了一个事实,即视觉相似性的简单度量通常可以限制相干的视觉结构,例如对象部分[18,53],
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。
检测化学和生物物质,以涉及各种应用方案,例如可穿戴电子设备,智能点(POC)诊断,环境监测等。[1,2]要适当地满足这些新兴要求,理想的生化传感器应具有诸如高灵敏度,长期鲁棒性,快速响应,实时监测能力,出色的选择性,低单位成本,检测下限,较大的动态范围,低功耗等等等特性[3]但是,人类仍然需要进行陡峭的攀登之旅才能实现这些目标。值得注意的是,2019年冠状病毒病的全球大流行(Covid-19)表明,我们的技术储备在满足这种紧急,庞大和多功能的要求方面并没有充分准备,并引起了对生化感测技术的极大关注。迄今为止,包括化学主义的几种主要技术路线,[4,5] plasonic,[6,7]电化学,[8,9]声传感器,[10,11]等。已经开发出来,每个传感器中的每一个都在某些上述方面具有针对各种实际应用方案的特定优点。纳米制造技术的快速开发用于不同材料和各种结构,由于其小特征和主动结构特性,例如高地表到数量,独特的物理特性,独特的物理特性等,戏剧性地增强了这些传感设备的性能。[12–14]
