量子纠缠是量子信息处理中的关键物理资源,它允许执行基本的量子任务,例如隐形传态和量子密钥分发,而这些任务在经典世界中是不可能的。自从量子信息论兴起以来,以信息论上有意义的方式量化纠缠一直是个悬而未决的问题。特别是,每个先前定义的具有精确信息论含义的纠缠测度都不一定是可有效计算的,或者如果它是可有效计算的,那么它是否具有精确的信息论含义也是未知的。在本文中,我们通过引入具有精确信息论含义的纠缠测度来应对这一挑战,该纠缠测度是当两个遥远的参与方被允许执行完全保留部分转置的正性的量子操作时准备纠缠态所需的精确成本。此外,这种纠缠度量可以通过半定理程序高效计算,并且具有许多有用的特性,例如可加性和忠实性。我们的研究结果为任意量子态的基本纠缠结构提供了重要见解,可以直接用于评估和量化量子物理实验中产生的纠缠。
量子照明的历史始于 2008 年,当时主要有两条研究路线。[6, 7] 的论文从量子干涉测量的角度考虑了雷达问题。然而,这些论文考虑了高度理想化的场景,忽略了热背景的影响。由于本篇综述的重点是量子雷达的实用性,我们不会进一步讨论这种方法,而是重点介绍 Seth Lloyd 在同一年开创的另一种方法 [8],当时他研究了如何使用量子光来检测嵌入在热背景中的弱反射目标 [8]。在他的论文中,Lloyd 将使用单光子的协议与基于纠缠的协议进行了比较,并表明纠缠可以大大降低对目标存在做出错误判断的概率。这些结果受到了来自
摘要 — 在远距离节点之间分配纠缠是量子网络中的一项基本任务。 为了完成这项任务,引入了量子中继器来执行纠缠交换。 本文提出了一种远程纠缠分布 (RED) 协议的设计,以最大化纠缠分布率 (EDR)。 我们引入了节点的概念,表示网络中纠缠的量子比特 (qubit) 对。 这一概念使我们能够基于一些线性规划问题的解来设计最优 RED 协议。 此外,我们研究了同质中继链中的 RED,它是许多量子网络的基石。 具体而言,我们以封闭形式确定了同质中继链的最大 EDR。 我们的研究结果使得能够使用有噪声的中尺度量子 (NISQ) 技术分配长距离纠缠,并为一般量子网络的设计和实施提供了见解。
理解非平衡量子动力学的一个有力视角是通过其纠缠内容的时间演化。然而,除了纠缠熵的几个指导原则外,迄今为止,人们对纠缠传播的精细特性知之甚少。在这里,我们从纠缠汉密尔顿量的角度揭示了纠缠演化和信息非平衡传播的特征。我们使用最先进的数值技术结合共形场论研究了原型 Bose-Hubbard 模型的量子猝灭动力学。在达到平衡之前,发现纠缠汉密尔顿量中出现了一个电流算子,这意味着纠缠扩散是由粒子流携带的。在长时间极限下,子系统进入稳定阶段,这由纠缠汉密尔顿量动态收敛到热系综的期望值所证明。重要的是,稳定状态下的纠缠温度与空间无关,这提供了平衡的直观特征。这些发现不仅为平衡统计力学如何在多体动力学中出现提供了重要信息,而且还为从纠缠哈密顿量的角度探索量子动力学增加了一个工具。
总体而言,经典力学是一种非常成功的物理现象描述方法,因为大多数现代工程问题和情况不需要超出经典力学所提供的描述。然而,自上个世纪初以来,人们开始清楚地认识到,实际的物理现实超出了经典描述的范围,需要一种新的方式来描述它。这种描述物理现象的新方法现在被称为量子力学。虽然在大多数情况下,似乎需要量子力学来描述微观世界中的物理现象,而经典力学足以描述宏观现象,但现代实验的进步已经证实,长度尺度上的区分并不正确。事实上,现在人们已经明白,无论物理系统是宏观的还是微观的,量子描述都是正确的描述。然而,在宏观世界中,经典描述足以描述大多数物理现象,因此在这种情况下,并不一定需要量子描述。
大学,甘托克,锡金 电子邮件:love.mittal@mangalayatan.edu.in 摘要:量子计算由量子比特(qubits)的非凡特性——叠加和纠缠推动,正处于技术革命的风口浪尖。叠加允许量子比特同时存在于多种状态,从而加速密码学、药物发现、优化、材料科学和人工智能中的问题解决。像 Shor 和 Grover 这样的量子算法有望颠覆传统加密并改变数据分析。纠缠是一种神秘的量子连接,它增强了量子通信和纠错,同时提供了安全的量子隐形传态。然而,量子计算面临着量子比特稳定性、扩展、纠错和量子软件开发等关键挑战。随着量子技术的进步,它有望重塑行业和社会,应对气候建模、能源、金融和物流等领域的挑战。前进的道路需要合作、道德考虑和对负责任发展的承诺。在这个量子时代,未来是量子的,充满创新、安全和变革性的计算能力。关键词:量子计算、量子比特、叠加、纠缠、量子算法 1. 简介:
早在1946年,J。A. Wheeler提出了一个实验,以验证一对理论的预测,即在n灭nih灭时发出的两个量子,具有零相对角动量的正电子 - 电子对,彼此之间是正确的。该建议涉及对各种方位角上两个an灭光子散射的巧合测量。Pryce和Ward'以及Snyder,Pasternack和Hornbostel报告了详细的理论研究。 '当两个计数器彼此成直角时,预测的最大不对称比率是当相机的共同平面物与2个。85,以8 = 82'的散射角出现。bleuler和bradt4使用了两个末端窗口6-m计数器作为检测器,并观察到与该理论不一致的不对称比。尽管如此,与结果相关的误差范围是如此之大,以至于使理论和实验之间的详细比较变得相当不利。同时,汉娜(Hanna)进行了类似的实验,并进行了更多的E%CIENT计数器排列,发现观察到的不对称比率始终小于所预测的不对称比。因此,通过使用更多的E%CIENT探测器和更有利的条件来重新分配此问题,这似乎是非常需要的。最近开发的闪烁计数器已被证明是可靠且高度高的伽马射线检测器。随着这种提高的效率,大约是G-M计数器的十倍,重合计数率将增加一百倍。被使用。在我们的实验中,两个RCA 5819摄影管和两个蒽晶体1x1xs。用这些蒽晶体获得的歼灭辐射的效率为7%至8%,与计算值相比有利。几何布置在图中示意性1。正电子源Cu〜被Deuteron Bombard the激活在哥伦比亚回旋子的铜靶上。采用电镀方法将CU活性与其他
[Beane:2018OXH] Silas R. Beane,David B. Kaplan,Natalie Klco和Martin J.野蛮人。纠缠抑制和强烈相互作用的新兴对称性。物理。修订版Lett。 122,102001(2019)。 [LOW:2021UFV] Ian Low和Thomas Mehen。 对纠缠抑制的对称性。 物理。 修订版 D 104,074014(2021)。Lett。122,102001(2019)。[LOW:2021UFV] Ian Low和Thomas Mehen。对纠缠抑制的对称性。物理。修订版D 104,074014(2021)。
基于卫星的量子通信通道对于超长距离很重要。鉴于卫星通行证的持续时间很短,在卫星通过该区域时,有效地连接全市网络的多个用户可能会很具有挑战性。我们提出了一个具有双功能性的网络:在短暂的卫星通行证中,地面网络被视为多点到点拓扑,所有地面节点都与卫星接收器建立纠缠。在不可用的卫星时,通过单个光学开关将卫星上链路连续到接地节点,并将网络作为配对地面网络配置。我们在数值上模拟了脉冲超键入光子源,并研究提出的网络配置的量子键分布的性能。在卫星接收器利用时间复杂的情况下,我们发现了有利的缩放,而地面节点则利用频率多路复用。可伸缩性,简单的可重新选择性和与纤维网络的易于集成使该体系结构成为许多地面节点和卫星量子通信的有前途的候选人,从而为在全球范围内的地面节点互连铺平了道路。