心率 (HR) 是人体健康的重要生理指标,可用于检测心血管疾病。传统的 HR 估计方法,例如心电图 (ECG) 和光电容积描记器,需要皮肤接触。由于皮肤接触会增加病毒感染的风险,在正在发生的 COVID-19 大流行中避免使用这些方法。或者,可以使用非接触式 HR 估计技术,即远程光电容积描记器 (rPPG),其中 HR 是根据人的面部视频估计的。不幸的是,现有的 rPPG 方法在面部变形的情况下表现不佳。最近,用于 rPPG 的深度学习网络激增。然而,这些网络需要大规模标记数据才能更好地泛化。为了缓解这些缺点,我们提出了一种方法 ALPINE,即一种新的 L r P PG 技术,用于使用对比学习来改进远程心率估计。 ALPINE 在训练过程中利用对比学习框架来解决标记数据有限的问题,并在数据样本中引入多样性以实现更好的网络泛化。此外,我们引入了一种新颖的混合损失,包括对比损失、信噪比 (SNR) 损失和数据保真度损失。我们的新颖对比损失最大化了来自不同面部区域的 rPPG 信息之间的相似性,从而最大限度地减少了局部噪声的影响。SNR 损失提高了时间信号的质量,数据保真度损失确保提取正确的 rPPG 信号。我们在公开数据集上进行的大量实验表明,所提出的方法 ALPINE 优于以前众所周知的 rPPG 方法。
在这项工作中,我们提出了一种用于人形 iCub 机器人头部姿势估计和场景表示的神经形态架构。脉冲神经网络在英特尔的神经形态研究芯片 Loihi 中完全实现,并精确整合发出的运动命令,以在神经路径整合过程中估计 iCub 的头部姿势。iCub 的神经形态视觉系统用于校正姿势估计中的漂移。机器人前方物体的位置使用片上突触可塑性来记忆。我们使用机器人头部的 2 个自由度 (DoF) 进行实时机器人实验,并展示精确的路径整合、视觉重置和片上物体位置学习。我们讨论了将机器人系统和神经形态硬件与当前技术集成的要求。
摘要 - 这项研究的重点是分析Chaviña湿地的碳储存能力,目的是估计空中生物量中存在的碳储备。为此,使用0.25 m 2 Quadrat随机获得17个样品。随后,每个样品在60°C的温度为24至72小时的温度下在烤箱中进行干燥过程,直到它们达到恒定的重量为止。接下来,应用了Walkley和Black方法来确定每个样品中的碳含量。最后,进行了计算以获取存储在空中生物质中的碳库存。此外,进行了统计测试,以确定地上生物量中碳百分比与沼泽水平(高,中和低)存储在地上生物量中的碳之间的差异。获得的结果表明,三个沼泽水平之间的碳库存没有显着差异。此外,可以量化湿地生物量存储总计18 628 TC和隔离器70 904 TCO 2。这一发现将Chaviña湿地作为重要的碳储层的相关性。
随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。
摘要 - 次数是最敏捷的飞行机器人之一。尽管在基于学习的控制和计算机视觉方面取得了进步,但自动无人机仍然依赖于明确的状态估计。另一方面,人类飞行员仅依靠从板载摄像头的第一人称视频流将平台推向极限,并在看不见的环境中坚固地飞行。据我们所知,我们提出了第一个基于视觉的四摩托系统,该系统自动浏览高速的一系列门,而直接映射像素以控制命令。像专业的无人机赛车飞行员一样,我们的系统不使用明确的状态估计,并利用人类使用的相同控制命令(集体推力和身体速率)。我们以高达40 km/h的速度展示敏捷飞行,加速度高达2 g。这是通过强化学习(RL)的基于识别的政策来实现的。使用不对称的参与者批评,可以促进培训,并获得特权信息。为了克服基于图像的RL训练期间的计算复杂性,我们将门的内边缘用作传感器抽象。可以在训练过程中模拟这种简单但坚固的与任务相关的表示,而无需渲染图像。在部署过程中,使用基于Swin-Transformer的门检测器。我们的方法可实现具有标准,现成的硬件的自动敏捷飞行。尽管我们的演示侧重于无人机赛车,但我们认为我们的方法超出了无人机赛车的影响,可以作为对结构化环境中现实世界应用的未来研究的基础。
近年来,自主导航变得越来越流行。但是,大多数现有的方法在公路导航方面有效,并利用了主动传感器(例如LIDAR)。本文使用Passive传感器,特别是长波(LW)高光谱(HSI)的遍历性估计,重点介绍了自主越野导航。我们提出了一种方法,用于选择一部分高光谱带,该方法通过设计一个最小的传感器设计带选择模块,该模块设计一个最小的传感器,该模块设计了一个最小的传感器,该模块可以测量稀疏采样的光谱带,同时共同训练语义段网络网络,以进行遍历性估计。使用我们的LW HSI数据集在包括森林,沙漠,雪,池塘和开放式田野的各种越野场景中证明了我们方法的有效性。我们的数据集包括在各种天气条件下白天和夜间收集的图像,包括具有广泛障碍的具有挑战性的场景。使用我们的方法,我们学习了所有HSI频段中的一个小子集(2%),这些子频段可以在利用所有高光谱带时获得竞争性或更好的遍历性估计精度。仅使用5个频段,我们的方法能够实现平均类别的效果,该级别仅比使用完整的256波段HSI低1.3%,而仅比使用250频段HSI实现的效果仅比使用了0.1%,这证明了我们方法的成功。
摘要。量子体积是一个全面的、单一的数字指标,用于描述量子计算机的计算能力。近年来,它呈指数级增长。在本研究中,我们将假设这种情况仍然如此,并将这一发展转化为另一种量子算法——量子振幅估计的性能发展。这是使用噪声模型完成的,该模型估计算法单次运行的错误概率。其参数与模型假设下的量子体积有关。将相同的噪声模型应用于量子振幅估计,可以将错误率与每秒生成的 Fisher 信息联系起来,这是量子振幅估计作为一种数值积分技术的主要性能指标。这为其积分能力提供了预测,并表明,如果没有重大突破,作为一种数值积分技术的量子振幅估计在不久的将来不会比传统替代方案更具优势。
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
对准确的3D手姿势估计的追求是理解以自我为中心视力领域的人类活动的基石。大多数现有估计方法仍然依赖单视图像作为输入,从而导致潜在的局限性,例如,深度有限的视野和义务。解决这些问题,添加另一个相机以更好地捕获手的形状是实践方向。然而,现有的多视图手姿势姿势方法具有两个主要缺点:1)重新训练的多视图注释,这些注释是备用的。2)在测试过程中,如果相机参数/布局与训练中使用的相同,则模型将变为inpapplicable。在本文中,我们提出了一种新颖的单算观看改编(S2DHAND)解决方案,该解决方案将预先训练的单视估计器适应双视图。与现有的多视图训练方法相比,1)我们的适应过程是无监督的,消除了对多视图注释的需求。2)此外,我们的方法可以处理带有未知相机参数的Arbitarary双视图对,从而使该模型适用于不同的相机设置。具体来说,S2DHAND建立在某些立体声约束上,包括两种视图之间的成对跨视图共识和转换的不变性。这两个立体声约束以互补的方式使用来进行伪标记,从而允许可靠的适应性。评估结果表明,在内部和跨数据库设置下,S2DHAND在任意摄像机对上实现了重大的实现,并且胜过具有领先性能的现有适应方法。项目页面:https://github.com/ut-vision/s2dhand。
