过去几年,价格实惠的(X-Plane 1)或免费提供的(FlightGear 2)真实飞行模拟软件取得了长足进步。这两个程序都保证了很高的真实度,甚至用于飞行员的训练驾驶舱。FlightGear 提供了几种成熟的飞行动力学模型(FDM)供您选择,这些模型大多基于非线性运动方程,如 JSBSim(Berndt (2004))或用户定义模型。这在使用高度专业化的飞机(如轻于空气的飞机)或有自定义方程组可用时非常有用,而 FlightGear 仅用于可视化目的并提供真实的环境条件。这种方法的缺点是用户必须提供 FDM 中使用的所有系数,包括对不同飞行参数的参数化以提高真实感。
SBSim 1 于 1996 年被设想为一个批量模拟应用程序,旨在为飞机建模飞行动力学和控制。† 人们普遍认为,这种工具在学术环境中非常有用,可以作为飞机设计和控制课程的免费辅助工具。1998 年,作者开始从事 FlightGear 项目。2 FlightGear 是一个功能齐全的复杂桌面飞行模拟器框架,可用于研究或学术环境、开发和追求有趣的飞行模拟想法以及作为最终用户应用程序。当时,FlightGear 使用的是 LaRCsim 3 飞行动力学模型 (FDM)。LaRCsim 要求使用程序代码对新飞机进行建模。与 FlightGear 社区开发人员的讨论表明,为了使飞行模拟更易于访问,创建一个通用的、完全数据驱动的 FDM 框架会很有帮助。也就是说,特定的飞机将在数据文件中定义,并且不需要新的程序代码来对任何任意飞机进行建模。这种框架的其他特征包括:
然而,与所有公司一样,时间和成本是决定使用 FDM 的关键因素。当 BLWTL 构建带有压力接头的建筑模型时(图 5),它不再需要手动钻孔。大型模型上的压力接头位置可能多达 1,000 个,钻孔既费时又繁琐。BLWTL 通过将压力接头孔直接合并到 CAD 模型中并在 FDM 模型中构建它们来消除此步骤。由于它使用 WaterWorks,因此只需从每个压力接头孔中冲洗掉支撑材料即可。这种技术使创建风洞模型所需的时间和劳动力减少了高达 66%。总体而言,与以前的方法相比,BLWTL 的平均成本节省了约 30%。凭借风洞模型的这种节省,该实验室估计它仅在三到五年内就收回了每台 Fortus 系统的成本。
然而,与所有公司一样,时间和成本是决定使用 FDM 的关键因素。当 BLWTL 构建带有压力接头的建筑模型时(图 5),它不再需要手动钻孔。大型模型上的压力接头位置可能多达 1,000 个,钻孔既费时又繁琐。BLWTL 通过将压力接头孔直接合并到 CAD 模型中并在 FDM 模型中构建它们来消除此步骤。由于它使用 WaterWorks,因此只需从每个压力接头孔中冲洗掉支撑材料即可。这种技术使创建风洞模型所需的时间和劳动力减少了高达 66%。总体而言,与以前的方法相比,BLWTL 的平均成本节省了约 30%。凭借风洞模型的这种节省,该实验室估计它仅在三到五年内就收回了每台 Fortus 系统的成本。
摘要。添加剂制造(AM),也称为3D打印,可以构建定制包装的微电体系统,这些系统是完美量身定制的,可完美地针对组件尺寸和规格。在融合沉积3D打印技术(FDM)中,残留应力受印刷条件的影响,这会降低材料性能并导致几何变形。在打印过程中,时间和温度会影响FDM中使用的聚合物的热机械性能和结晶动力学。这项工作的目的是根据印刷条件(环境温度,打印速度和层厚度)评估样品中的残余应力。选择了六个点以计算和比较样品中的残余应力,第一层中有三个点,第二点为三个点。模拟和建模用于研究印刷条件对半晶体聚合物热力学行为的影响,以进行有效评估。
摘要 - 多种阵列广泛用于神经记录,无论是在体内还是在体内培养的神经元中。在大多数情况下,记录位点是被动电极连接到外部读出电路的电极,电线的数量至少等于记录位点的数量。我们提出了一种使用石墨烯有源电极打破常规N线n-电极阵列结构的方法,该电极允许使用频率分割多路复用(FDM)在多个活动电极之间在记录位点进行信号上流转换以及每个接口电线的共享。提出的工作包括使用石墨烯FET电极,自定义集成电路(IC)Ana-log前端(AFE)和数字解调的频率调制和读取体系结构的设计和实施。AFE在0.18 µm CMOS中制造;提供电气表征和多通道FDM结果,包括基于GFET的信号调制和IC/DSP解调。长期,这种方法可以同时实现高信号计数,高度分辨率和高时间精度,以推断神经元之间的功能相互作用,同时显着降低了访问线。
摘要:添加剂制造(AM),可持续性和创新的融合在行业4.0的框架内至关重要。本文研究了AM的环境友好和可持续的方面,通常称为3D打印,一种尖端的技术。它描述了AM的基本原理,除了其多种材料,过程和应用。本文展示了几种3D打印技术如何通过检查其环境影响来彻底改变可持续生产。可持续材料的特性,应用和挑战(例如可生物降解的聚合物和可回收塑料)得到了彻底检查。此外,该研究还探讨了3D打印在域中的含义,包括可再生能源成分制造,水和废水处理以及环境监测。此外,还检查了与可持续3D打印相关的潜在陷阱和挑战,强调了该领域持续研究和进步的关键。要有效地使可持续性目标与功能性能要求保持一致,必须解决融合沉积建模(FDM)印刷过程中的复杂性,包括次优粘结和纤维分布不均匀,这可能损害可生物降解材料的结构完整性和耐用性。正在进行的研究和创新对于克服这些挑战并增强可生物降解的FDM 3D打印材料的生存能力至关重要。
