胆道癌 (BTC) 是仅次于肝细胞癌的第二大常见原发性肝癌,占癌症相关死亡人数的 2%。根据解剖来源,BTC 可分为肝内 (iCCA)、肝门部或远端胆管癌以及胆囊癌。虽然这些解剖学 BTC 亚型的突变谱在很大程度上重叠,但 iCCA 以高频率的 IDH1/2 突变 (10-22%) 和几乎 10-15% 的患者中唯一发生 FGFR2 融合而著称。近年来,FGFR2 融合已成为针对 BTC 的精准肿瘤治疗最有希望的靶点之一,FGFR 抑制剂已在欧洲和美国获批用于治疗晚期、已接受过治疗的 iCCA 患者。虽然非融合变异的治疗潜力仍存在争议,但预计 FGFR2 导向疗法领域将得到进一步快速发展和优化。本综述的范围是概述 iCCA 细胞中的致癌 FGFR 信号,并强调与 FGFR2 变异 iCCA 相关的病理生理学、诊断检测策略以及治疗前景和挑战。
骨细胞在低氧环境中起作用,以控制骨形成的关键步骤。FGF23是一种临界磷酸盐调节激素,受到急性和慢性疾病中低氧/铁的刺激,但是指向此过程的分子机制尚不清楚。我们的目标是确定由氧气/铁利用变化驱动的FGF23产生的骨细胞因子。低氧诱导因子 - 丙酰羟化酶抑制剂(HIF-PHI)稳定HIF转录因子,正常小鼠以及骨细胞样细胞中的FGF23增加;在有条件骨细胞FGF23缺失的小鼠中,抑制了循环的IFGF23。诱导型MSC细胞系(“ MPC2”)接受了FG-4592治疗和AtacSeq/RNASEQ,并证明了分化的骨细胞显着提高了HIF基因组可及性与祖细胞的基因组可及性。整合基因组学还显示,羟化羟化酶EGLN1(PHD2)染色质访问性和表达增加,与骨细胞分化呈正相关。在患有慢性肾脏疾病(CKD)的小鼠中,PHD1-3酶被抑制,与该模型中的FGF23上调一致。体内骨细胞的有条件损失导致FGF23上调,这与我们的发现一致,即缺乏PHD2(CRISPR PHD2-KO细胞)组成型激活的FGF23的MPC2细胞系被HIF1α封锁了。在体外,PHD2-KO细胞失去了铁介导的FGF23的抑制,并且该活性未被PHD1或-3弥补。。 总的来说,骨细胞在分化过程中适应氧/铁感应,并且对生物利用铁直接敏感。在体外,PHD2-KO细胞失去了铁介导的FGF23的抑制,并且该活性未被PHD1或-3弥补。总的来说,骨细胞在分化过程中适应氧/铁感应,并且对生物利用铁直接敏感。此外,PHD2是骨细胞FGF23产生的关键介体,因此我们的集体研究可能为涉及涉及氧气/铁感应障碍的骨骼疾病提供新的治疗靶标。
心血管和代谢疾病(CVMD)在发达和发展中国家的发达和发展中国家越来越普遍。近年来,成纤维细胞生长因子21(FGF21)由于据称是CVMD中潜在的生物标志物和关键参与者的作用而引起了密集的研究兴趣,包括动脉粥样硬化,冠状动脉疾病,心肌梗死,心肌疾病,低氧/多氧损伤,心脏衰竭,2型糖尿病,不适合2型糖尿病,肥胖症,肥胖症和肥胖症。本综述总结了研究FGF21在CVMD中的作用的最新发展,并探讨了FGF21调节CVMD的发展的机制。新型分子靶标和FGF21的相关途径(腺苷5'-Onophathate激活的蛋白激酶,无声信息调节剂1,与自噬相关的分子和肠道微生物群相关的分子)在本综述中得到了强调。考虑到天然FGF21的药代动力学和生物物理特性差,新一代基于FGF21的药物的发展具有巨大的治疗潜力。在本综述中还总结了相关的临床前和临床研究,以促进临床翻译。因此,我们的综述提供了FGF21在CVMD中的生理学,生物标志物潜力,分子靶标和治疗潜力的及时概述。
摘要:尽管胃食管癌的全身治疗最近取得了进展,但预后仍然不佳。全面的分子分析已经表征了胃食管癌的基因组图谱,并确定了治疗靶点,例如人表皮生长因子受体 2 (HER2)、血管内皮生长因子受体 (VEGFR) 和程序性死亡配体 1 (PD-L1)。异常的成纤维细胞生长因子受体 2 (FGFR2) 通路对于 FGFR 抑制的靶向治疗很有吸引力,因为临床前数据显示该通路在胃癌 (GC) 进展中起着关键作用。FGFR2 扩增是胃食管癌中最常见的 FGFR2 基因异常,与弥漫性 GC 最相关,这通常与较差的预后结果有关。以 FGFR 抑制为重点的药物开发取得了长足的进展。目前,尚无获批用于 FGFR2 阳性胃食管癌的 FGFR 抑制剂。目前,选择性 FGFR2b 单克隆抗体 bemarituzumab 正在第一阶段 III 期随机试验中接受研究,该试验针对一线晚期 GC 患者,这可能会改变 FGFR2b 阳性 GC 的治疗模式。FGFR 信号传导(特别是 FGFR2)在食管鳞状细胞癌 (ESCC) 中的作用尚不明确,缺乏这些患者临床获益的证据。精准医疗是胃肠道癌症更广泛治疗方法的一部分;然而,由于异质性,精准医疗可能具有挑战性,而用于患者选择的循环肿瘤 DNA (ctDNA) 可能具有未来的临床效用。在我们的综述中,我们概述了 FGFR 通路,并重点介绍了针对 FGFR2 驱动的胃食管癌的发展和挑战。关键词:胃癌、胃食管癌、FGFR2、分子靶点、新疗法
摘要:原发性脊髓胶质母细胞瘤 (PSC GBM) 是一种罕见疾病,治疗选择有限。本文我们描述了一例用安罗替尼治疗的 PSC GBM 病例。分子表征证实患者存在 MGMT 启动子未甲基化、IDH 野生型、FGFR3 p.S249C 和 p53 p.V73fs 突变。安罗替尼是一种多靶点酪氨酸激酶抑制剂,靶向 VEGFR2/3、FGFR1-4、PDGFRα/β 和 c-kit。在髓外侵袭部位肿瘤部分切除后,患者每天口服一次 12 毫克安罗替尼(第 1-14 天,21 天为一个周期),联合伊立替康化疗(第 1 天和第 8 天,21 天为一个周期)。患者表现出明显的症状缓解和部分反应,并维持了超过 10 个月的随访。本病例研究显示FGFR3 S249C可能成为安罗替尼治疗PSC GBM的新标志物,也为分子诊断和精准医疗提供了又一有力支持。关键词:脊髓胶质母细胞瘤,FGFR3突变,安罗替尼,靶向治疗,精准医疗
引言鼻咽癌(NPC)在2018年占73,000人死亡,东南亚的发病率最高(1,2)。通常在NPC发育中促成因素,包括爱泼斯坦 - 巴尔病毒(EBV)感染,遗传易感性和生活方式(2)。在临床上,放疗和化学疗法是针对早期NPC和非转移性NPC患者进行的(3)。但是,转移性NPC患者的治疗选择有限。转移性NPC似乎是一组具有广泛存活的肿瘤,肺,肝脏和骨骼是远处转移的最常见部位(4)。靶向治疗被认为是进一步延长NPC患者存活的有效方法。尽管如此,几项临床试验表明,与传统的化学治疗疗法相比,靶向Bevacizumab的血管内皮生长因子(VEGF)SIG-NALINing或靶向cetuximab的靶向表皮生长因子(EGF)信号传导,并未显示NPC患者的临床益处(5-7)。因此,迫切需要对NPC的Novel分子靶向疗法。NPC转移的机械研究是开发新的靶向疗法的基础。目前,NPC转移研究主要是
引言鼻咽癌(NPC)在2018年造成73,000人死亡,东南亚的发病率最高(1,2)。鼻咽癌发展的常见因素包括爱泼斯坦-巴尔病毒(EBV)感染、遗传易感性和生活方式(2)。临床上,放疗和化疗是推荐用于早期鼻咽癌和非转移性鼻咽癌患者(3)。然而,转移性鼻咽癌患者的治疗选择有限。转移性鼻咽癌似乎是一类异质性肿瘤,生存范围广泛,肺、肝和骨是远处转移最常见的部位(4)。靶向治疗被公认为进一步延长鼻咽癌患者生存的有效方法。然而,多项临床试验表明,与常规放化疗相比,针对血管内皮生长因子 (VEGF) 信号的贝伐单抗或针对表皮生长因子 (EGF) 信号的西妥昔单抗在鼻咽癌患者中未显示出临床益处 (5–7)。因此,迫切需要开发针对鼻咽癌的新型分子靶向治疗。鼻咽癌转移机制研究是开发新型靶向治疗的基础。目前,鼻咽癌转移研究主要集中在
胆道癌 (BTC) 是一类异质性罕见恶性肿瘤,可起源于胆道任何部位,但预后均不良。BTC 细分为肝内胆管癌 (ICCA)、肝外胆管癌 (ECCA) 和胆囊癌。ICCA 起源于肝实质,而 ECCA 可起源于肝脏以外胆道的任何部分,可进一步分为肝门部胆管癌或远端胆管癌 (1)。ICCA 和 ECCA 的全球发病率都在增加 (2,3)。预计 2020 年全球原发性肝癌(包括肝细胞癌和胆道癌)新发病例为 906,000 例,其中 ICCA 约占 10-15% (4)。 ABC-02 III 期试验确立了晚期 BTC 的首选治疗方法,与吉西他滨相比,吉西他滨联合顺铂组的 OS 显著改善(中位数 11.7 个月对 8.1 个月,HR 0.64)(5、6)。一项 II 期非随机单组临床试验研究了在吉西他滨-顺铂中添加白蛋白紫杉醇(7)。中位 PFS 为 12.2 个月,中位 OS 为 19.2 个月,与历史对照相比更为有利。最近,TOPAZ-1 试验中将度伐单抗添加到化疗中取得了积极成果(8)。在该研究中,与单独使用吉西他滨和顺铂相比,度伐单抗联合顺铂和吉西他滨可使死亡风险降低 20%,达到了试验的主要终点,
1。acs。www.cancer.org。2。Jaehne J和Al。 J Oncool Cinder。 1992; 118-479。 3。 nakashima h和al。 int j癌。 1995; 64:239-2 4。 树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1Jaehne J和Al。J Oncool Cinder。 1992; 118-479。 3。 nakashima h和al。 int j癌。 1995; 64:239-2 4。 树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1J Oncool Cinder。1992; 118-479。 3。 nakashima h和al。 int j癌。 1995; 64:239-2 4。 树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-11992; 118-479。3。nakashima h和al。int j癌。1995; 64:239-24。树T和Al。 J Pathol。 1995; 177:353-3 5。 tian x和al。 常见的生物物理学。 2001; 286:505-5 6。 matsunobu t和al。 他们曾经J。 2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1树T和Al。J Pathol。1995; 177:353-35。tian x和al。常见的生物物理学。2001; 286:505-56。matsunobu t和al。他们曾经J。2006; 28:314。 7。 wu c和al。 操作历史记录。 2006; 108:19-2 8。 sahin u和al。 Clins Ress。 2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-12006; 28:314。7。wu c和al。操作历史记录。2006; 108:19-28。sahin u和al。Clins Ress。2008; 14:7624-7634。 9。 d和al。 科学。 2017; 357:409-4 10。 Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-12008; 14:7624-7634。9。d和al。科学。2017; 357:409-410。Yang b和al。 J扩展职责。 2019:38:2 11。 Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1Yang b和al。J扩展职责。2019:38:211。Samstein RM和Al。 nat Genet 2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-1Samstein RM和Al。nat Genet2019:51:202-206。 12。 ahn s和al。 Pathol模式。 2016; 29:1095-12019:51:202-206。12。ahn s和al。Pathol模式。2016; 29:1095-1
摘要 胃腺癌 (GAC) 的标准化疗方案疗效有限且毒性较大。在先前的 GAC 临床前研究中,白蛋白结合型紫杉醇已显示出良好的抗肿瘤作用。多韦替尼抑制受体酪氨酸激酶家族成员,包括 FGFR、VEGFR 和 PDGFR,并在包括 GAC 在内的许多实体瘤中表现出抗肿瘤作用。基于白蛋白结合型紫杉醇的抗有丝分裂、抗基质和 EPR 作用,我们研究了多韦替尼在多种 GAC 临床前模型中对白蛋白结合型紫杉醇反应的增强作用。在 MKN-45 皮下异种移植中,白蛋白结合型紫杉醇和多韦替尼对肿瘤生长的抑制率分别为 75% 和 76%。多韦替尼加白蛋白结合型紫杉醇对肿瘤生长有附加抑制作用,导致肿瘤消退(恢复至原始值的 85%)。与对照组(23 天)相比,多韦替尼单药治疗仅使动物存活率(25 天)略有改善,而白蛋白结合型紫杉醇单药治疗或多韦替尼加白蛋白结合型紫杉醇联合治疗分别使动物寿命显著延长 83%(42 天)和 187%(66 天)。皮下肿瘤的 IHC 分析显示,多韦替尼降低了肿瘤细胞增殖和肿瘤血管。体外研究表明,多韦替尼和白蛋白结合型紫杉醇单独使用可降低肿瘤细胞增殖,联合治疗可产生叠加效应。 MKN-45 和 KATO-III 细胞的免疫印迹分析显示,多韦替尼降低了磷酸化 FGFR、磷酸化 AKT、磷酸化 ERK、磷酸化 p70S6K、磷酸化 4EBP1、Bcl-2,并增加了裂解 PARP-1、裂解 caspase-3、p27、Bax、Bim,联合治疗具有附加作用。这些结果表明,FGFR/VEGFR/PDGFR 抑制剂多韦替尼有可能增强白蛋白结合型紫杉醇的抗肿瘤作用,这对临床 GAC 治疗的发展具有重要意义。