lmb具有锂金属作为阳极的LMB有望达到高达500 WH kg-1的高能密度。但是,商用电解质系统与锂金属和电解质之间的反应性高的锂阳极不兼容。此外,高波动性,强烈的易燃性和较差的热稳定性对LMB构成了安全威胁。因此,电解质系统在确保LMB的电化学性能和安全性方面起着至关重要的作用。开发具有较高界面稳定性的内在安全电解质系统最近是LMB的研究热点。非易易易受电解质系统,例如固态电解质,(局部)高浓度电解质,离子液体(IL)电解质(IL)电解质和共晶电解质,以提高LMB的安全性和可靠性[1]。
• 本工作报告了 2022 年 2 月 21 日至 25 日在新南威尔士大学堪培拉空间澳大利亚国家并行设计设施 (ANCDF) 为期 5 天的研讨会上进行的第 14 次并行工程研究。 • 澳大利亚依赖外国卫星图像和测量数据,而这些图像和测量数据并未针对监测澳大利亚丛林大火燃料的可燃性进行优化,导致澳大利亚境内发生火灾。2020 年国家自然灾害皇家委员会强调需要在整个大陆上清晰地了解植物燃料负荷的数量和水分含量 [RD-1]。 • 澳大利亚国立大学 (ANU) 空间研究所 (InSpace) 此前为澳大利亚地球科学局和澳大利亚联邦科学与工业研究组织 (CSIRO) 开发了一份前阶段 A 报告,以支持他们对澳大利亚卫星交叉校准辐射计 (SCR) 和 AquaWatch Australia 任务的贡献。该报告描述了 OzFuel 任务、其科学目标以及一组任务要求和有效载荷/仪器性能要求,以满足任务目标 [RD-2]。
1 样品为使用 #1581 或 7781 玻璃的 12 层层压板。 2 应验证每层层压板的可燃树脂含量为 28% 至 33.6%(可使用通常用于玻璃纤维增强材料的烧尽法验证树脂含量)。对于可燃性测试,应使用双层玻璃纤维织物层压板,每层的经向相同。 存储 Epocast ® 50-A1 树脂/硬化剂 9816 应存放在干燥处,存放在原装密封容器中,温度介于 2°C 至 40°C(35.6°F 至 104°F)之间。每次使用后,请重新密封容器。在这些存储条件下,产品的保质期为自发货之日起 1 年(到期日期可能因客户规格而异)。产品不应暴露在直射阳光下。
物理状态 : 液体 外观 : 粘稠液体 颜色 : 琥珀色 气味 : 略带醚味 气味阈值 : 无可用数据 pH : 无可用数据 熔点 : 不适用 凝固点 : 无可用数据 沸点 : > 107.3 °C 闪点 : > 93.4 °C 相对蒸发率(乙酸丁酯 = 1) : 无可用数据 可燃性(固体、气体) : 不适用。蒸汽压 : 无可用数据 20 °C 时的相对蒸汽密度 : 无可用数据 相对密度 : ≈ 1.15 溶解性 : 无可用数据 正辛醇/水分配系数 (Log Pow) : 无可用数据 自燃温度 : 无可用数据 分解温度 : 无可用数据 运动粘度 : 无可用数据 动态粘度 : 无可用数据 爆炸极限 : 无可用数据 爆炸性质 : 无可用数据 氧化性质 : 无可用数据
可燃性下限: 无数据 闪点 无数据 开杯 自燃温度 无数据 未知 分解温度 未知 pH 无数据 未知 pH(水溶液) 无数据 无信息 运动粘度 无数据 未知 动态粘度 无数据 未知 水溶性 无数据 未知 在其他溶剂中的溶解度 无数据 未知 分配系数 无数据 未知 蒸气压 无数据 未知 相对密度 无数据 未知 堆积密度 无数据 液体密度 无数据 蒸气密度 无数据 未知 颗粒特性 粒度 无信息 粒度分布 无信息
■ 触点数量:半模块 - 72;全模块 - 144 ■ 间距:1.8 毫米 ■ 额定电流:每个触点 1.5625 A 每个电源晶片 12.5 A(使用 30°C 温升和 1 盎司铜降额) ■ 提取力:通常每个触点 1.2 盎司 ■ 额定温度:-55°C 至 125°C ■ 绝缘体材料:LCP(液晶聚合物) ■ 触点镀层:50 µin。镀金镍层 ■ 可燃性等级:UL94-VO ■ 介电耐压:500 VAC ■ 低电平电路电阻:最大 8 m Ω ■ 绝缘电阻:最大 500 M Ω ■ 随机振动:15 Grms,每轴 10 Hz 至 2000 Hz,持续 90 分钟,符合 MIL-STD-1344,方法 2005,测试条件 III ■ 机械冲击:100 G,6 ms 锯齿响应,符合 MIL-STD-1344,方法 2004,测试条件 G
以 2008 年的水平为基准。为了实现这些具有挑战性的目标,海运业必须引入 SO X 、NO X 和 CO 2 排放量可忽略不计或较低的环保燃料。氨在海运应用中的应用前景广阔,因为它具有高能量密度、低可燃性、易于储存和低生产成本的特点。此外,氨可用作燃料电池等各种推进器的燃料,并可由可再生能源生产。因此,氨可用作多功能船用燃料,利用现有基础设施,并且 SO X 和 CO 2 排放量为零。然而,要使氨成为实现航运脱碳的有力燃料,还需要克服几个挑战。这些因素包括选择合适的氨燃料发电机、选择合适的系统安全评估工具以及缓解氨危害的措施。本文讨论了用于船舶应用的氨燃料燃料电池的最新进展,并介绍了它们的潜力和挑战。
1 样品为使用 #1581 或 7781 玻璃的 12 层层压板(否则为纯树脂样品)。 2 样品也可在 77°F 下固化 1 小时 + 在 212°F 下固化 2 小时 3 应验证每层层压板的可燃树脂含量为 28 至 33.6%(可使用通常用于玻璃纤维增强材料的烧尽法验证树脂含量)。对于可燃性测试,应使用两层玻璃纤维织物层压板,每层的经向相同。 存储 Epocast ® 50-A1 树脂/硬化剂 946 应存放在干燥处,放在原装密封容器中,温度在 2°C 至 40°C(35.6°F 至 104°F)之间。每次使用后应重新密封容器。在这些储存条件下,产品自发货之日起保质期为 1 年(有效期可能因客户要求而异)。产品不应暴露在直射阳光下。
自1950年代以来,已经对氨燃烧进行了基本研究,以了解以下特征,例如:易燃性,点火延迟,火焰传播和物种形成。在优化发动机的能量输出时,前三个很重要,但该物种对于优化排放是至关重要的。在过去的十年中,早期实验的数据已成为化学动力学机制的验证目标,并作为进一步的技术实现的参考。这导致了对氨燃烧的实验工作和建模的重大兴趣,因为现代发动机性能的现代要求无法用现有数据来描述。以及氨水滑移,没有X形成和N2O排放可以解决,因为先前的工作主要集中在这些物种上,因为这些物种是化石燃料燃烧中的TR,而不是主要燃料燃烧途径中的元素。因此,在相关条件下的这种物种形成和潜在排放尚未从先前的工作中清楚地理解或映射。可以从Mashruk等人获得有关艺术状态的全面审查。3