每年,FLIP 流都会对一个年度主题进行研究,然后在学术界、专业界和社会中传播。2018 年的年度主题是人工智能与法律职业,由 Michael Legg 教授和 Felicity Bell 博士领导。2019 年的主题是变革管理,由 Justine Rogers 副教授领导。2020 年的主题是法律和律师的可持续性,由 Michael Legg 教授领导,并产生了两本入门书:Michael Legg 教授的《法律成本和律师费用的未来》和 Felicity Bell 博士的《法律设计思维》。2021 年的主题是《法律服务交付的未来》,由 Marina Nehme 副教授和 Felicity Bell 博士领导。FLIP 流还参与并响应了其他研究和法律改革领域。
flip 是一种极其简单且最大程度局部化的经典译码器,在某些类的经典代码中得到了广泛应用。当应用于量子码时,存在无法由该译码器纠正的恒重误差(如稳定器的一半),因此先前的研究考虑了 flip 的修改版本,有时还与其他译码器结合使用。我们认为这可能并非总是必要的,并提供数值证据证明当将 flip 应用于立方格子上三维环面码的环状征象时,存在一个阈值。该结果可以归因于以下事实:对于该译码器,最低权重的无法纠正误差比其他无法纠正误差更接近(就汉明距离而言)可纠正误差,因此它们很可能在未来的代码周期中经过额外噪声变换后变得可纠正。在解码器中引入随机性可以使其以有限的概率纠正这些“不可纠正”的错误,对于使用信念传播和概率翻转相结合的解码策略,我们观察到现象噪声下的阈值为 ∼ 5.5%。这与该代码的最佳已知阈值(∼ 7.1%)相当,该阈值是使用信念传播和有序统计解码 [Higgott and Breuckmann, 2022] 实现的,该策略的运行时间为 O(n3),而我们的本地解码器的运行时间为 O(n)(并行时为 O(1))。我们预计该策略可以推广到其他低密度奇偶校验码中,并希望这些结果能够促使人们研究其他以前被忽视的解码器。
Detected Defects Shorts, opens, minimum line/space violations, nicks, protrusions, dishdowns, copper splashes, pinholes, missing or excess features, wrong size and position of features, clearance and split plane violations, blocked holes, annular ring violations, SMT violations, black spots, wire bonding pad defects, flip chip pad defects, defects in through blind vias
Detected Defects Shorts, opens, minimum line/space violations, nicks, protrusions, dishdowns, copper splashes, pinholes, missing or excess features, wrong size and position of features, clearance and split plane violations, blocked holes, annular ring violations, SMT violations, black spots, wire bonding pad defects, flip chip pad defects, defects in through blind vias
VI. 参考文献 [1] Jamin Ling Joseph Sanchez Ralph Moyer 2、Mark Bachman 2、Dave Stepniak I、Pete Elenius 'Kulicke & Soffa“倒装芯片技术的铜上直接凸块工艺”2002 年电子元件与技术会议。 [2] Li Li、M. Nagar、J. Xue“热界面材料对倒装芯片 PBGA 和 SiP 封装制造和可靠性的影响”2008 年第 58 届电子元件与技术会议。 [3] Samuel Massa、David Shahin、Ishan Wathuthanthri 博士、Annaliese Drechsler 和 Rajneeta Basantkumar“具有不同凸块成分的倒装芯片键合工艺开发”2019 年国际晶圆级封装会议论文集。
并在计算和通信领域带来新成果。双方抛硬币的场景说明了问题的答案如何根据模型的性质而改变。假设双方,Alice 和 Bob,通过通信渠道连接,并希望一起抛硬币。Alice 希望抛硬币的结果是“ 0 ”,而 Bob 希望结果是“ 1 ”。Alice 和 Bob 可以互相发送消息,在通信结束时,他们将分别广播比特,表示为𝑋 和𝑌,声明他们各自认为抛硬币的结果。我们的目标是规定 Alice 和 Bob 的行为(可能包括各自做出一些独立的随机选择),以使以下条件成立。
真空管 1103 真空管中大多数都是三极管。三极管包含一个灯丝,灯丝由通过它的电流加热,并放置在靠近“阴极”的位置,阴极反过来变热,导致电子从阴极表面的稀土涂层发射出来。带负电的电子被吸引到周围带正电的阳极或“板”。当在阴极和板之间放置一个称为“网格”的细网时,它充当控制元件。网格上的负电压可以大大减少流向板的电流。通常向板上施加约 100 到 200 伏电压,网格上的约 -20 伏电压可以切断管电流。一个管壳中包含两个三极管,这一对可以构成一个触发器。一个触发器,存储一个信息位,可以设置为“一”,清除为“零”,或切换,即,改变为相反状态。后一个功能在某些逻辑和算术运算中非常方便。电容器将触发器的状态存储一小段时间,因此它不会因单个输入脉冲而切换两次。另一个三极管通常连接到每个触发器输出作为“阴极跟随器”(带有
已经对用于调整磁共振成像(MRI)参数的技术进行了研究,以获取具有更好特征的图像。在这项研究中,我们旨在通过使用用户友好的MRILAB模拟程序来调整翻转角度,激发次数(NEX)和带宽(BW)来确认人脑T2加权图像的最佳参数值。我们还考虑了噪声水平和相似性评估参数。根据结果,随着NEX的增加和BW的降低为90°,噪声水平和相似性评估得到了改善,而它们的最佳状态不太最佳,而不是90°的翻转角度。发现过多的参数变化会在此类图像中引起额外的噪声和伪影,从而导致图像清晰度恶化。因此,我们确认设置适当的参数在磁共振图像采集中至关重要。
该团队还在支持出院时需要拔除导管的患者方面发挥了关键作用。有证据表明,如果患者事先使用 Flip Flo 阀门,拔除导管的成功率会更高。与尿控团队合作,可以尽早发现和治疗合适的患者。这种早期干预的好处在于可以降低感染、败血症和抗生素使用的风险,减少住院和护理就诊次数,减少紧急出诊次数,减少导管供应需求。