摘要:丝状真菌因其在蛋白质分泌方面的熟练程度和出色的翻译后修饰能力,作为蛋白质生产细胞工厂展现出无与伦比的潜力。本综述概述了丝状真菌在不同世代的生物输入技术中的作用,并探讨了它们产生次级代谢产物的能力。我们的研究强调了丝状真菌在生物活性化合物生产中的领先地位,强调了阐明其代谢库的必要性。此外,我们深入研究了丝状真菌遗传转化的常见策略,阐明了每种技术的基本原理、优点和缺点。我们采取前瞻性的方法,探索基因组工程(特别是 CRISPR-Cas9 技术)作为促进丝状真菌蛋白质分泌的手段的前景。对这些真菌中蛋白质分泌途径的详细研究为其工业应用提供了见解。值得注意的是,科学界已开展了大量研究,重点研究了用于工业生产蛋白质和酶的曲霉菌和木霉菌。本综述还介绍了旨在增强丝状真菌酶分泌以用于各种工业应用的基因工程策略的实例。这些发现强调了丝状真菌作为蛋白质生产多功能平台的潜力,并强调了该领域未来研究和技术进步的途径。
线粒体疾病[经过董事会认证的医学遗传学家,发育小儿或神经科医生; o高度怀疑基于病史,家族史,实验室或其他临床检查的线粒体疾病; o临床表现不支持使用单个基因或靶向遗传分析; o个体具有与线粒体疾病一致的临床特征,例如以下条件之一:近端无力;或肌肉痉挛,疲劳或运动不耐受;或
描述/背景TP53基因TP53基因包含用于产生肿瘤蛋白p53的遗传指令。p53蛋白是一种肿瘤抑制剂,它是细胞周期调节剂,可在发生DNA损伤时防止细胞不受控制的生长和分裂。躯体(获得的)致病变异是人类癌症中最常见的改变之一。种系(遗传)致病变异与Li-Fraumeni综合征(LFS)有关。li-fraumeni综合征Li-Fraumeni综合征是一种癌症易感综合征,与癌症的高寿命累积风险相关,并且受影响个体中多种癌症的趋势。该综合征最初是基于对年轻兄弟姐妹及其生物学相关的堂兄的侵略性软组织肉瘤的回顾性分析进行了描述的。1,肿瘤类型与LFS前大体乳腺癌,骨骼和软组织肉瘤,中枢神经系统(CNS)肿瘤,肾上腺皮质癌,下型淋巴细胞性白血病,异常早期发作,其他腺癌的其他儿童或其他儿童的早期发作。肉瘤,乳腺癌,肾上腺皮质肿瘤和某些脑肿瘤已被称为LFS的“核心”癌症,因为它们解释了在具有种系TP53致病性和可能致病变异的个体中观察到的大多数癌症。2,3,与LF相关的其他恶性肿瘤包括各种胃肠道,肺,皮肤和甲状腺癌以及白血病和淋巴瘤。估计发生第二次肿瘤的风险为40%至49%。2,在1患有LFS的个体患有多种原发性肿瘤的风险增加,随后发生恶性肿瘤,并非所有与以前的肿瘤的治疗明显相关。
描述/背景他汀类药物HMG-COA还原酶抑制剂或他汀类药物是全球高胆固醇血症的主要药物治疗。在美国,估计有3800万人在2008年服用了他汀类药物。1他汀类药物的使用与各种各样人群的心血管事件减少了约30%。2在心血管结局中的各种社会经济差异以及降低风险措施的实施,包括使用他汀类药物和其他药物来管理高胆固醇血症。患有冠状动脉疾病的女性接受他汀类药物的可能性少于男性,而服用他汀类药物的患者与服用他汀类药物相比,接受治疗的可能性较小并获得脂质控制。3,4,5,与类似的白人相比,与类似的白人相比,处方他汀类药物处方的黑人个体的处方汀类药物的可能性明显较小,而与服用他汀类药物的白人个体相比,黑人和非白人西班牙裔人的脂质控制率较低。6,5,这些观察结果部分是通过卫生社会决定因素(例如收入,保险和移民身份)的差异来介导的。7,8,商业可用的SLCO1B分子诊断测试,几个商业和学术实验室为他汀类药物诱导的肌病(SLCO1B1)变体提供了基因测试,包括波士顿心脏诊断和ARUP实验室(盐湖城盐湖城)。其他实验室提供了包括SLCO1B1基因在内的药物代谢的面板测试;例如,Apollogen(CA)。
描述/背景GM2神经节蛋白是一组溶酶体脂质储存障碍,其中包括Tay-Sachs病(TSD)。GM2神经节苷脂是在神经细胞膜表面发现的大脂质分子。它们不断合成和退化。溶酶体是细胞内的细胞器,其中包含大约50种不同的酶,这些酶与有毒物质消化和清除废物的消化有关。这样一种酶是β-己糖胺酶A(β-己糖胺酶A或Hex A),这是导致GM2神经节蛋白底物的正常分解代谢。当AX A缺乏或缺乏时,底物会在细胞中积聚导致细胞死亡的细胞,最著名的是大脑和脊髓中的细胞。Hexa基因提供了制作六角亚基的指示,而Hexa基因中的变体导致Hex A的生产不足A。TSD疾病的严重程度与人体产生的十六进制量直接相关。tay-sachs已被发现有几种形式:婴儿(或经典),少年和成人(或晚发)。在一个家庭中只有一种形式的Tay-Sachs发生。婴儿tay-sachs:婴儿形式的特征是几乎完全缺乏十六进制的酶活性,并且是最严重的形式。婴儿出生时可能不受影响;但是,症状出现在生命的头几个月中。症状包括失去学习技能(回归),癫痫发作以及肌肉和心理功能的丧失。经典的症状是从脉络膜暴露中发现了眼球的樱桃红点。以这种形式的儿童在幼儿时期无法生存。少年tay-sachs:这种形式具有一系列严重性,症状出现在童年时期的任何时候,但通常在2至5岁之间。症状包括行为问题,逐渐丧失技能,频繁的呼吸道感染和癫痫发作。具有这种形式的孩子通常无法在十几岁的时候生存。成人Tay-Sachs:这是最不严重的形式,在童年后期出现症状。症状可能包括笨拙,肌肉无力,精神疾病和
补体途径中的其他确认基因包括C2,C3,CFB和CFI。[4]在全基因组关联研究的基础上,已经与高密度脂蛋白(HDL)胆固醇途径基因有关,包括CETP和LIPC,以及可能的LPL和ABCA1。[4,5]胶原基质途径基因COL10A1和COL8A1,载脂蛋白E APOE和细胞外基质途径基因Timp3和FBN2也已与AMD链接。[4]参与DNA修复(RAD51B)和血管生成途径(VEGFA)中的基因也与特定SNP一样与AMD相关。[6]最近Fang(2021)提出了与上述早期AMD和中级AMD不同遗传生物标志物使用的系统综述,它们比其他类别的生物标志物更可再现和侵入性。[7]
现有的植物转化方法和超越其极限的扩展对于作物改良仍然至关重要。对于禾本科植物来说,这甚至更加关键,主要是因为体外再生存在缺陷。尽管禾本科植物中存在许多通过农杆菌或基因枪法实现遗传转化的方案,但它们的效率取决于基因型,而且由于这些物种难以进行体外再生,因此效率仍然很低。世界各地的大学和企业中可能有许多用于谷物和其他重要作物的植物转化设施,但对于无融合生殖物种来说情况并非如此,其中许多是 C4 禾本科植物。此外,无融合生殖(通过种子进行无性繁殖)是育种的另一个限制因素。然而,无融合生殖克隆的转化是一种有吸引力的策略,因为转基因会立即固定在高度适应的遗传背景中,能够进行大规模克隆繁殖。除了巴西种植面积约为 1 亿公顷的 Brachiaria brizantha 等一些物种外,无融合生殖在经济作物中几乎不存在。然而,由于有时在野生近缘种中存在这种特性,因此主要目标是将这种特性转移到作物中以固定杂种优势。到目前为止,这是一项艰巨的任务,主要是因为无融合生殖的许多方面尚不清楚。在过去的几年中,已经确定了许多候选基因,并尝试在拟南芥和水稻中对它们进行功能鉴定。然而,真正的无融合生殖物种的功能分析远远落后,主要是由于其基因组的复杂性、性状本身的复杂性以及缺乏有效的遗传转化方案。在本研究中,我们回顾了以无融合生殖禾本科植物为重点的体外培养和遗传转化方法的现状,以及在其他相关物种中应用新工具的前景,目的有两个:为发现无融合生殖所涉及的分子途径铺平道路,并开发新的育种能力,因为这些禾本科植物中的许多都是重要的饲料或生物燃料资源。
摘要 了解基因在个体之间以及跨代际如何形成形态和功能是许多遗传学研究的共同主题。遗传学、基因组工程和 DNA 测序的最新进展强化了基因并不是决定表型的唯一因素这一观念。由于基因表达的生理或病理波动,即使是基因相同的细胞在相同条件下也会表现出不同的表型。在这里,我们讨论了可能影响甚至破坏基因型和表型之间轴的机制;修饰基因的作用、遗传冗余的一般概念、遗传补偿、最近描述的转录适应、环境压力源和表型可塑性。此外,我们还强调了诱导多能干细胞 (iPSC) 的使用、通过基因组工程生成同源系以及测序技术可以帮助从迄今为止被认为是“噪音”的东西中提取新的遗传和表观遗传机制。