生成的3D部分组装涉及了解零件关系,并预测其6-DOF姿势,用于组装逼真的3D形状。先前的工作通常集中在各个部分的几何形状上,忽略了整个物体的零件。利用两个关键的观察:1)超级部分姿势提供了有关零件姿势的强烈提示,而2)由于较少的超级部分,预测超级零件的姿势更容易,我们提出了一个零件 - 整个层次结构消息传递网络,以实现有效的3D零件组件。我们首先通过在没有任何语义标签的情况下对几何相似部分进行分组,从而引入超级零件。然后,我们采用零件整体的层次编码器,其中超级零件编码器预测基于输入部分的潜在超级零件姿势。随后,我们使用潜在姿势转换点云,将其馈送到零件编码器中,以汇总超级零件信息和有关零件关系的推理以预测所有部分姿势。在培训中,仅需要地面零件姿势。在推断期间,超级零件的预测潜在可增强可解释性。Partnet数据集上的实验结果表明,我们的方法可以部分地达到最新的功能和连接精度,并实现可解释的层次结构组件。代码可在https://github.com/pkudba/3dhpa上找到。
摘要 - 将神经梯度体系结构(NGA)集成到大语言模型(LLMS)中,导致了自然语言处理的明显进步,从而增强了生成文本的精确性和相干性。通过采用梯度驱动的计算,NGA根据上下文提示动态调整内部途径,从而使LLMS能够更有效地适应各种语言任务。这种方法证明了在上下文理解至关重要的情况下,诸如机器翻译,摘要和对话生成等任务的改进。NGA的融合也有助于减少常见问题(例如重复性或无关的产出),从而提高了生成内容的总体质量。此外,NGA的适应性允许在各个领域对LLM进行更有效的微调,从而促进了其在专业领域的应用,而无需大量的重新培训。经验结果表明,NGA在完善LLM的生成过程中的功效,强调了其大大提高自然语言处理系统性能的潜力。因此,NGA的采用代表了LLM体系结构演变中的关键进展,为开发更响应敏感和上下文意识到的语言模型提供了强大的框架。
尤其是,人们对在政治竞选和选举的其他方面增加人工智能产生了很大的担忧。“选举中的人工智能”已成为今年的主导主题,在这一年中,大量选举的汇聚和生成式人工智能工具在公众中的出现使人们认为这是一种单一、广泛的威胁,而不是更复杂、多样且目前有限的用例。对未知事物的恐惧,特别是与人工智能工具在选举中产生的影响(无论是积极的还是消极的)有关的恐惧,因其实际和感知的不透明性和难以追踪而加剧。人工智能尚未被充分理解、信任或监管,其部署和使用的透明度和道德性在很大程度上由拥有自身利益和底线的科技公司决定。
抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
用于 AI 模型的训练数据集,特别是用于训练语言模型的数据集。图书馆提供对大量文本语料库的访问,并促进 AI 内容的许可。加拿大大学图书馆非正式报告称,研究人员因学术出版商的糟糕工具和 AI 研究的高许可成本而受阻。这些工具价格昂贵、专有,并且缺乏研究人员所需的功能。TDM 活动的许可成本现在是大型跨国出版商的收入来源,要求图书馆多次支付使用相同内容的费用,尽管用途不同。此类行动体现了将所有用途商品化并从而缩小公共资源的动力,威胁公共利益并破坏了《版权法》在用户和权利人之间的平衡。
深层生成模型(DGM)是用于学习数据表示的多功能工具,同时合并了域知识,例如条件概率分布的规范。最近提出的DGMS解决了比较来自不同来源的数据集的重要任务。这样的示例是对比分析的设置,该分析的重点是描述与背景数据集相比富含目标数据集中的模式。这些模型的实际部署通常假定DGM自然推断出可解释的和模块化的潜在表示,这在实践中是一个问题。因此,现有方法通常依赖于临时正规化方案,尽管没有任何理论基础。在这里,我们通过扩展非线性独立组件分析领域的最新进展,提出了对比较DGM的可识别性理论。我们表明,尽管这些模型在一般的混合功能上缺乏可识别性,但当混合函数在零件上时,它们令人惊讶地变得可识别(例如,由Relu神经网络参数化)。我们还研究了模型错误指定的影响,并从经验上表明,当未提前知道潜在变量的数量时,以前提出的用于拟合比较DGM的正则化技术有助于识别性。最后,我们引入了一种新的方法,用于拟合比较DGM,该方法通过多目标优化改善了多个数据源的处理,并有助于使用约束优化以可解释的方式调整正规化的超参数。我们使用模拟数据以及通过单细胞RNA测序构建的细胞中的遗传扰动数据集以及最新的数据集验证了我们的理论和新方法。关键字:非线性ICA;深层生成模型;变分推断;解开;
(3)深层生成模型求解随机过程:研究求解随机模型(例如扩散模型)(例如扩散模型)(例如,扩散模型)中随机过程的随机微分方程(SDE)或部分微分方程(PDE)(PDE)(PDES)。模型)在培训期间(5)生成模型中的隐式偏见和正则化:探索生成模型中存在的隐式偏见及其对概括的影响。研究显式和隐式正则化技术的有效性(6)生成模型的鲁棒性和泛化边界:分析生成模型的鲁棒性界限及其在分布分布的场景下(7)潜在的空间几何形状(7)潜在的空间几何学和流形学习:分析与生成模型的潜在空间和与生成数据分配的分析及其关系分配的相关性。探索如何平衡潜在空间中的多样性和发电质量,并研究复杂数据情景中不同流形学习技术的有效性和局限性
1引言生成建模在机器学习和人工智能领域起着重要作用,因为它提供了一种能够理解,解释以及在我们数据丰富世界中存在的复杂模式的功能工具包。通过将概率理论作为捕获给定数据集中固有不确定性的原则方法,这些模型旨在近似负责生成数据的基础分布或随机过程。因此,概率生成模型具有解决各种问题的潜力,包括生成新的数据示例,进行观察给出的推理,估计事件的可能性以及有关不确定信息的推理。但是,从数据中学习分布是一个挑战问题,通常需要在建模灵活性和概率推断的障碍之间进行权衡。早期生成模型的优先级优先考虑可牵引推理,通常是通过图形模型的形式将概率结构施加在random变量上[Koller and Friedman,2009]。因此,他们缺乏对复杂分布进行建模的挠性。自那以后,提出的可进行的概率模型(TPM)的领域随后发生了,并提出了端流的参数化和学习范式,从而在概率电路的统一概念下产生了广泛而流行的模型类别。从障碍性的角度设计,这些模型可以有效地推断和精确的概率推理,使其适合于要求快速准确计算的任务。但是,
● 持续监控 c 和维护 a、b、d:随着新数据的出现,持续监控人工智能的性能,跟踪准确性、公平性和安全性等关键指标,以确保算法是最新的。定期使用最新的真实数据重新验证系统,以检查性能漂移。如果监控发现性能下降,及时重新训练或优化模型。由于在决策环境中赋予特定利益相关者特定责任时,问责制的构建效果最好,因此卫生系统应考虑明确所有权或委派监控、修改、重新训练和/或停用算法的责任。