摘要:背景:使用基因组数据,我们确定了MRSA ST398分离株的起源,该分离物是无知的牲畜接触患者的侵入性感染。方法:我们使用Illumina Technique测序了2013年至2017年之间具有侵入性感染患者的七个MSSA和四种MRSA ST398分离株的基因组。预言相关的毒力基因和耐药基因。为了确定分离株的起源,其基因组序列被包括在系统发育分析中,还包括NCBI上可用的ST398基因组。结果:所有分离株都带有ϕ SA3预言,但是免疫逃避簇的变化:MRSA分离株中的C型,MSSA分离株中的B型B型。所有MSSA都属于SPA Type T1451。MRSA菌株具有相同的SCC MEC类型IVA(2B)盒式盒子,属于SPA型T899,T4132,T1939和T2922。所有MRSA都携带四环素抗性基因TET(M)。系统发育分析表明,MSSA分离株属于人类相关的分离株,而MRSA分离株属于含有牲畜相关的MRSA的簇。结论:我们表明临床分离株MRSA和MSSA ST398具有不同的起源。通过牲畜相关的MRSA分离株对毒力基因的获取使它们能够在人类中诱导侵袭性感染。
Garyk Brixi ∗,1,2,3,Matthew G. Durrant ∗,1,2,Jerome Ku ∗,1,2,Michael Poli ∗,2,3,5,Greg Brockman ∗ ∗,2,6,§,§,Daniel Chand,Daniel Chand ∗,1,2,2,2,2,2,3,Gonzale a.Gonzalez aref.gonzalez king ∗,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,§,2,6,§ David B. Li ∗∗ , 1 , 2 , 3 , Aditi T. Merchant ∗∗ , 1 , 3 , Mohsen Naghipourfar ∗∗ 1 , 2 , 7 , eric ngyen ∗∗∗ 2 , 3 , chia ricci-tam ∗ chia ∗∗∗ 2 , 2 , 2 , , 2 , , , , Sun∗∗∗∗∗ ∗∗ 2 , Ali Taghibakshi ∗∗∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ er E E E E E Anton Vorontsov ∗ ∗ ∗ ∗ ∗收er远er本 * ∗ ∗ ∗ ∗ er本∗ ∗ ∗发 ∗ ∗发 er家发∗发 ∗发够 * ∗ ∗ ∗ ∗消E EM e,4 * ∗ ∗ ∗ ∗发 ∗消EM段,4,4,布兰登·杨(Brandon Yang)∗ ∗ ∗ ∗ ∗ ∗收er远er家人∗ ∗ ∗ ∗消ET恤∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗消E ET,那么eTADADAD A.的,那么4 nichadems 9,4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 nicholas K. wang a vangah adams 9,specuus 3 Ermon,Daniel Guo 1,3,Rajesh Ilango 1和Janik 4,Amy 6,Lu 7,Reshma Mehta,Mofrad 7,Madelena Y。 ng 3 , jappreet Pannu 3 , Christopher Ré 3 , Jonathan C. Schmok 1 , John St. John 4 , Jeremy Sullivan 1 , Kevin Zhu 7 , Greg Zynda 4 , Daniel Balsam 8 , 10 , Patrick Collison 1 , 10 , Anthony B. Costa 4 , 4 , 10 , Thomas McGrath 8 , 10 , Kimberly Powell 4 , 10 , Dave P. Burke ‡ , 1 ,2,10,Hani Goodzi‡,1,2,11,Patrick,2,7,10,Brian L. Hie‡,†,1,2,2,3,10
青霉素结合蛋白(PBPS)的D,D-转肽酶活性是β-乳用于阻断肽聚糖多物种的β-乳酰胺抗生素的众所周知的主要靶标。β -lactam诱导的细菌杀死涉及复杂的下游反应,其原因和后果很难解决。在这里,我们使用β-乳酰胺不敏感的L,D- trans-肽酶对PBP的功能替代,以鉴定在积极分裂细菌中β-l -lactams在β -lactams灭活PBP所必需的基因。通过这种方法鉴定的179个有条理的基本基因的功能远远超出了肽聚糖聚合的L,D-转肽酶伴侣,包括包括参与胁迫反应的蛋白质和外膜外聚合物的组装。β-乳转酰胺的未引起的作用包括脂蛋白介导的共价键的丧失,该键将外膜与肽聚糖连接到肽聚糖,不动deptagi-lization,尽管有效地具有有效的肽聚糖交叉链接,并增加了外膜外膜的渗透性。后一种效应表明β-乳酰胺的作用方式涉及通过外膜自促进的穿透力。
由水稻白叶枯病 (BB) 病原菌 (Xoo) 引起的水稻细菌性叶枯病威胁着全球粮食安全和小规模水稻生产者的生计。对来自亚洲、非洲和美洲的 Xoo 样本的分析表明,尽管全球大米贸易强劲,但其分布却呈现出令人惊讶的大陆隔离现象。本文,我们报告了坦桑尼亚前所未有的 BB 疫情。与地方性的 Xoo 不同,病原菌株携带针对蔗糖转运蛋白 SWEET11a 并抑制 Xa1 的亚洲型 TAL 效应物。系统基因组学将这些菌株与来自中国的 Xoo 菌株聚集在一起。非洲水稻品种没有携带合适的抗性基因。为了保护非洲水稻生产免受这种新出现的威胁,我们开发了一种混合 CRISPR-Cas9/Cpf1 系统来编辑东非优良品种 Komboka 的三个 SWEET 启动子中的六个 TALe 结合元素。经过编辑的品系表现出对亚洲和非洲Xoo菌株的广谱抗性,包括最近在坦桑尼亚发现的菌株。这一策略可能有助于保护全球水稻作物免受BB大流行的影响。
长达两周的国际培训(2月3日至7日,以及“植物性企业工具和技术中的基因组编辑”是由ICAR-IARI与Innovative Genomics Institute合作组织的(IGI(IGI)(IGI)(IGI),由诺贝尔(Nobel)的加利福尼亚大学Berkele jennifer Prof.All the lectures and practical were conducted by the resource team from IGI consisting of Dr. Brad Ringeisen, Executive Director, Dr. Clarice de Azevedo Souza, Senior Progam Manager, Prof. Venkatesan Sundaresan, University of California Davis, Dr. Carlotta Ronda, Principal Investigator, Dr. Brady Cress, Principal Investigator, Maria Florencia Ercoli Davis, Project Scientist, Dr.项目经理伊丽莎白·恩朱古纳(Elizabeth Njuguna),博士后Amala John博士,博士生Erin Newringeisen女士和博士生Antonio Francisco Chaparro先生。
。CC-BY-NC 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 7 月 17 日发布。;https://doi.org/10.1101/2020.07.17.209189 doi:bioRxiv preprint
化疗耐药性在癌症死亡率中起着重要作用。为了确定影响对阿糖胞苷(AML 的主要治疗方法)敏感性的基因单元,我们基于双蛋白质编码和非编码集成 CRISPRa 筛选 (DICaS) 开发了一个全面的全基因组平台。最初使用来自 517 种人类泛癌细胞系的药物遗传学数据确定了假定的抗性基因。随后,通过 CRISPR 激活对编码和 lncRNA 基因进行了基因组规模的功能表征。对于 lncRNA 功能评估,我们开发了一种 CRISPR 激活 lncRNA (CaLR) 策略,针对 14,701 个 lncRNA 基因。计算和功能分析确定了新的细胞周期调控、存活/凋亡和癌症信号基因。此外,我们分析中确定的 GAS6-AS2 lncRNA 的转录激活导致 GAS6/TAM 通路过度激活,这是包括 AML 在内的多种癌症的耐药机制。因此,DICaS 代表了一种新颖而强大的方法,用于识别与治疗相关的综合编码和非编码途径。
浙江大学医学院附属邵逸夫医院普通外科蔡秀军课题组领导的研究通过CRISPR/cas9系统对索拉非尼治疗下的肝癌细胞(HepG2)全基因组进行筛选,筛选出了在索拉非尼耐药中占主导地位的基因:KEAP1。KEAP1调控的下游分子Nrf2是细胞抵抗活性氧(ROS)的重要分子。本研究首先通过KEAP1/Nrf2基因编辑检测索拉非尼在肝癌细胞中的IC 50 等大量功能性实验,验证了KEAP1-Nrf2轴在索拉非尼耐药中的作用。本研究发现一种名为ML385的特异性Nrf2小分子抑制剂在体内和体外均能增强索拉非尼的杀伤作用。
ruth chia, 1, 82 anindita ray, 2, 82 zalak shah, 2 jinhui ding, 3 paola ruffo, 1, 4 masashi fujita, 5 vilas menon, 5 saraz-tienzar, 1 paolo reho, 2 karri kaivola, 2 karri kaivola, 2 karri kaivola, 2 karri kaivola, 2 karri kaivola, Walton, 6 Regina H. Reynolds, 7, 8, 9 Ramita Karra, 1 Shaimaa Sait, 2 Fulya Akcimen, 1 Monica Diz-Fairen, 10 ignacio Alvarez, 10 AlesSandra Fanciuli, 11 Nadia Stefanova, 11 Klaus Sppi, 11 Susanne Duerr, 11 Fabian Leys, 11 Florian Krismer, 11 Victoria Sidoroff, 11 Alexander Zimprich, 12 Walter Pirker, 13 Olivier Rascol, 14 Alexandra Faubert-Samier, 15 WassiliOS G.SSSSSRER, 15, 16, 17 Franca Ois Tisson, 15, 16 Anne Pavy-Le Traon, 18 Maria Teresa Pellecchia, 19 Paolo Barone, 19玛丽亚·克劳迪娅·拉西洛(Maria Claudia Russillo),19胡安·马大(JuanMarı'n-Lahoz),20,21,22,22 Jaime Kulisevsky,20,21 Soraya Torres,21 Pablo Miri,23,24,25 Maria Teresa a”劳拉·帕克宁(Laura Parkinen),米歇尔(Michele)t。
arrowia lipolytica 属于子囊菌门、酿酒菌亚门和双足菌科 (1)。除了工业用途 (2) 之外,Y. lipolytica 还广泛存在于食品、环境和动物中 (1)。由于其能够在 32°C 以上不稳定地生长,因此通常认为该菌种可安全用于工业用途 (1)。Yarrowia lipolytica 是一种机会性病原体,可引起侵袭性念珠菌病 (3)。在体外,该菌种被认为对氟康唑敏感 (4)。第一个 Y. lipolytica 基因组 (CLIB122) 于 2004 年发布 (5)。我们报告了对氟康唑有抗性的 Y. lipolytica 临床分离株的基因组草图,该分离株是从溃疡性结肠炎手术后的血培养中采集的。有趣的是,尽管之前曾接触过唑类药物,但使用梯度浓度试纸法(Etest;bioMérieux),该菌株的氟康唑 MIC 为 0.256 mg/mL。患者成功地用卡泊芬净治疗。该菌株在 35°C 的显色琼脂平板(CAN2;bioMérieux)上生长,并使用 Vitek 基质辅助激光解吸电离 - 飞行时间质谱 (MALDI-TOF MS) 仪器(bioMérieux)进行鉴定。在溶菌酶细胞壁消化后,使用 QIAmp DNA minikit(Qiagen)提取基因组 DNA。使用 Illumina DNA 制备标记试剂盒(Illumina)构建文库。简而言之,使用珠状转座子技术和集成 DNA 技术 (IDT) 的 Illumina DNA/RNA 独特双重 (UD) 索引集将 30 ng 总 DNA 片段化并进行索引。使用 Qubit 高灵敏度试剂盒 (Thermo Fisher Scienti ) 对文库进行扩增、纯化和定量。最后,将 9 pM 汇集和变性文库放入 2 250-bp v2 试剂盒 (Illumina) 中,并使用 MiSeq 仪器 (Illumina) 进行测序。使用 CLC Genomics Workbench v22.0 (Qiagen) 中的 Trim Reads v2.5 和 De Novo Assembly v1.5 工具对原始读取进行修剪、组装成重叠群并进行搭建。使用覆盖率与长度图丢弃覆盖率为 , 10 且长度为 , 500 bp 的重叠群 (6)。使用 QUAST v5.0.2 对最终的 scaffold 集进行质量分析 (7)。总基因组大小为 20,255,408 bp,分布在 521 个 scaffold 上(覆盖率为 100 ),N 50 值为 105 kbp(最长 scaffold,397 kbp),GC 含量为 49.03%。AUGUSTUS v3.4.0 (8) 使用白色念珠菌训练数据集预测了 6,151 个蛋白质编码基因,使用 tRNAscan-SE 2.0 检测到了 484 个 tRNA 基因 (9)。使用 BUSCO v5.3.2 和 saccharomycetes_odb10 谱系数据集 (10) 估计基因组完整性为 95.3%。平均核苷酸同一性 (ANI) 计算