HBB,β-珠蛋白基因; HBSS,镰状细胞突变的纯合子; HCT,造血细胞移植; RBC,红细胞; SCD,镰状细胞疾病; Voe,Vaso-Occlusive活动。 1。 Kato GJ等人。 nat Rev dis Primers 2018; 4:18010。 2。 Williams TN等人。 Annu Rev Genomics Hum Genet 2018; 19:113–147。 3。 Platt OS等。 NEJM 1 994; 330:1639–44。 4。 镰状细胞疾病。 可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。 2023年6月访问。 5。 Wastnedge E等。 J Glob Health 2018; 8(2):021103。 6。 镰状细胞疾病。 可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。 2023年6月访问。 3HBB,β-珠蛋白基因; HBSS,镰状细胞突变的纯合子; HCT,造血细胞移植; RBC,红细胞; SCD,镰状细胞疾病; Voe,Vaso-Occlusive活动。1。Kato GJ等人。 nat Rev dis Primers 2018; 4:18010。 2。 Williams TN等人。 Annu Rev Genomics Hum Genet 2018; 19:113–147。 3。 Platt OS等。 NEJM 1 994; 330:1639–44。 4。 镰状细胞疾病。 可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。 2023年6月访问。 5。 Wastnedge E等。 J Glob Health 2018; 8(2):021103。 6。 镰状细胞疾病。 可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。 2023年6月访问。 3Kato GJ等人。nat Rev dis Primers 2018; 4:18010。2。Williams TN等人。Annu Rev Genomics Hum Genet 2018; 19:113–147。 3。 Platt OS等。 NEJM 1 994; 330:1639–44。 4。 镰状细胞疾病。 可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。 2023年6月访问。 5。 Wastnedge E等。 J Glob Health 2018; 8(2):021103。 6。 镰状细胞疾病。 可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。 2023年6月访问。 3Annu Rev Genomics Hum Genet 2018; 19:113–147。3。Platt OS等。NEJM 1 994; 330:1639–44。4。镰状细胞疾病。可用:https://www.thelancet.com/pb-assets/lancet/gbd/summaries/diseases/sickle-cell-disorders.pdf。2023年6月访问。5。Wastnedge E等。J Glob Health 2018; 8(2):021103。6。镰状细胞疾病。可用:https://www.nhlbi.nih.gov/health/sickle-cell-disease。2023年6月访问。3
通过碱基编辑在人类β珠蛋白基因 ( HBB ) 中引入天然存在的 Hb G-Makassar 变异,以消除聚合镰状蛋白 HbS(镰状细胞性贫血的主要分子驱动因素),这代表了治疗这种疾病患者的潜在新模式。虽然临床上正在推进几种用于治疗镰状细胞性贫血的体外基因编辑技术,但这种具有潜在变革性的细胞疗法仍然存在一些挑战,即在自体造血干细胞移植 (HSCT) 之前必须进行基因毒性骨髓清除性预处理。为了解决这个问题,我们开发了一种策略,即将一种与 CD117 结合的单克隆抗体 (mAb) 与多重工程化 HSC (eHSC) 结合,CD117 是 HSPC 上对生存至关重要的关键受体。我们的 eHSC 旨在逃避 mAb 结合并携带 Makassar 治疗性编辑。我们的工程干细胞抗体配对逃避(ESCAPE)策略旨在为当前的预处理方案提供一种非基因毒性的替代方案。
尽管 CRISPR-Cas9 是基因治疗发展的关键,但其潜在的脱靶突变仍然是一个主要问题。在这里,我们建立了一种“间隔缺口”基因校正方法,将 Cas9 D10A 切口酶与一对相距 200 到 350 bp 的 PAM-out sgRNA 相结合。结合腺相关病毒 (AAV) 血清型 6 模板递送,我们的方法可在人类造血干细胞和祖细胞(HSPC 包括长期 HSC)和 T 细胞中实现有效的 HDR,同时将 NHEJ 介导的靶突变降至最低。利用间隔缺口,我们开发了一种修复 HBB 、 ELANE 、 IL7R 和 PRF1 基因中发生的致病突变的方法。我们实现了 20% 到 50% 的基因校正效率,同时将 NHEJ 介导的靶突变降至最低。根据深入的脱靶评估,经典 CRISPR-Cas9 诱导的频繁非预期遗传改变在用间隔缺口处理的 HSPC 中显著减少或消失。因此,间隔缺口基因校正方法为基因治疗提供了更高的安全性和适用性。
迄今为止,大多数基因组编辑分析都是基于量化小插入和缺失。在这里,我们表明 CRISPR-Cas9 基因组编辑可以在不同的原代细胞和细胞系中诱导较大的基因修饰,例如缺失、插入和复杂的局部重排。我们使用不同的方法分析了造血干细胞和祖细胞 (HSPC) 中的大型缺失事件,包括克隆基因分型、液滴数字聚合酶链反应、具有唯一分子标识符的单分子实时测序和长扩增子测序分析。我们的结果表明,在 HSPC 中的 HBB(11.7 至 35.4%)、HBG(14.3%)和 BCL11A(13.2%)基因以及 T 细胞中的 PD-1(15.2%)基因的 Cas9 靶向切割位点处,高达数千个碱基的大量缺失以高频率发生。我们的发现对于推进基因组编辑技术治疗人类疾病具有重要意义,因为非预期的大规模基因修饰可能会持续存在,从而改变生物学功能并减少可用的治疗等位基因。
摘要:镰状细胞疾病(SCD)是一种常染色体隐性遗传性血液疾病,当HBB基因的两个等位基因都有突变时,会发生,导致产生异常的血红蛋白(HBS)。HBS的存在导致红细胞(RBC)采用与疾病相关的独特镰状形式。这又导致血管阻塞,减少血液循环和器官的损害。传统治疗(例如输血和羟基脲)提供缓解,但会带来自己的局限性和相关风险。基因疗法已成为寻求SCD的有希望的范式转变,通过靶向该疾病的遗传根源,从而提供了个性化的解决方案。本评论文章探讨了SCD基因疗法的原理和最新进步。但是,在基因治疗成为该疾病的主要治疗策略之前,需要克服一些挑战,包括对长期安全和效力评估的需求。正在进行的研究和创新有望增强治疗方法,并具有广泛可用的基因疗法的潜力,最终改善了SCD患者的生活质量。
血液系统的单基因疾病有可能通过体外自体干细胞移植来治疗,移植的是经过基因改造的造血干细胞和祖细胞 (HSPC)。sgRNA/Cas9 系统允许以单核苷酸分辨率精确修改基因组。然而,该系统依赖于内源性细胞 DNA 修复机制来修复 Cas9 诱导的双链断裂 (DSB),无论是通过非同源末端连接 (NHEJ) 途径还是通过细胞周期调节的同源定向修复 (HDR) 途径。在这里,我们描述了一组异位表达的 DNA 修复因子和 Cas9 变体,评估它们在 HBB 基因座上通过 HDR 促进基因校正或通过 NHEJ 抑制基因破坏的能力。尽管 DNA 修复因子的短暂整体过度表达不会提高原代 HSPC 中基因校正的频率,但通过与 Cas9 蛋白融合将因子定位到 DSB 确实改变了修复结果,朝着微同源介导的末端连接 (MMEJ) 修复(HDR 事件)的方向发展。当可预测的基因编辑结果对于治疗成功至关重要时,这种策略可能很有用。
AI 人工智能 BOT 桥接.外包.转型 CBI 现金干预 CCECS 公民参与和社区服务中心(位于贝鲁特美国大学) COVID-19 2019 冠状病毒病 DOT 数字机会信托 GDP 国内生产总值 IBV 激励型志愿服务 ICT 信息和通信技术 ID 身份识别 IDP 境内流离失所者 IFC 国际金融公司 ILO 国际劳工组织 KII 关键线人访谈 GoL 黎巴嫩政府 GoJ 约旦政府 HBB 居家企业 JD 约旦第纳尔 MEHE 教育和高等教育部 MENA 中东和北非 MFI 小额信贷机构 MoL 劳工部 MSME 微型、小型和中型企业 NAF 国家援助基金 PRS 来自叙利亚的巴勒斯坦难民 rCSI 简化应对策略指数 SME 中小企业 SSNP 社会安全网计划 UNHCR 联合国难民事务高级专员公署 UNICEF 联合国儿童基金会 UNRWA 联合国近东巴勒斯坦难民救济和工程处 US$ 美国美元 WFP 世界粮食计划署
重组腺相关病毒(RAAV)是通常用于基因治疗的病毒载体。残留的宿主细胞DNA是一种与感染和致癌性风险有关的杂质。因此,需要对其进行监控以进行质量控制。我们旨在开发针对18S核糖体RNA(RRNA)基因的液滴数字聚合酶链反应(DDPCR)方法,以定量残留宿主细胞DNA。使用两组共享C-末端的启动对确定18S rRNA基因的拷贝数。对于将18S rRNA基因的拷贝数转化为基因组DNA的质量浓度,HEK293基因组DNA中18S rRNA基因的准确拷贝数通过与三个参考基因的拷贝数(EIF5B,DCK和HBB的拷贝数进行比较)确定。结果表明,回收了88.6–97.9.9%的HEK293基因组DNA,被回收到RAAV制剂中。将基于DDPCR的分析应用于RAAV制剂,以定量残留的宿主细胞DNA作为杂质。我们的发现表明该测定可用于RAAV产品中残留宿主细胞DNA的定量和尺寸分布。
CPT 代码描述*0060U 双胞胎接合性,使用母体血液中循环的无细胞胎儿 DNA 对 2 号染色体进行基因组靶向序列分析*0168U 胎儿非整倍体(21、18 和 13 三体)使用母体血浆对选定区域进行 DNA 序列分析(无胎儿分数截止值),算法报告为每个三体的风险评分*0327U 胎儿非整倍体(13、18 和 21 三体),使用母体血浆对选定区域进行 DNA 序列分析,算法报告为每个三体的风险评分,包括性别报告(如果执行)*0488U 产科(胎儿抗原无创产前检测),无细胞 DNA 序列分析用于检测同种免疫妊娠中胎儿是否存在 1 种或多种 Rh、C、c、D、E、Duffy(Fya)或 Kell(K)抗原,报告为选定检测到或未检测到的抗原*0489U 产科(单基因无创产前检测),对一个或多个目标(例如 CFTR、SMN1、HBB、HBA1、HBA2)进行无细胞 DNA 序列分析,以识别父系遗传的致病变异,并根据分子计数进行相对突变剂量分析,以确定母体突变的胎儿遗传,算法报告为该疾病的胎儿风险评分(例如囊性纤维化、脊髓性肌萎缩、β 血红蛋白病 [包括镰状细胞病]、α 地中海贫血)
压力超负荷引起的病理心脏肥大(CH)是心脏的复杂且自适应的重塑,主要涉及心肌大小的增加和心室壁增厚。随着时间的流逝,这些变化会导致心力衰竭(HF)。然而,这两个过程的个体和公共生物学机制仍然鲜为人知。这项研究旨在在四个星期和六个星期的横向主动脉收缩(TAC)分别鉴定与CH和HF相关的关键基因和信号传导途径,并在整个心脏转录组水平上从CH到HF的动态过渡中研究潜在的潜在分子机制。最初,在左心房(LA),左心室(LV)和右心室(RV)中鉴定了CH的总共363、482和264个差异表达的基因(DEG),以及HF的317、305和416摄氏度。这些确定的DEG可以用作不同心脏腔室的两个条件的生物标志物。此外,在所有腔室中都发现了两个公共DEG,弹性蛋白(ELN)和血红蛋白β链链链-Beta链变体(HBB -BS),在LA和LV中,LA和LV中有35个公共DEG,CH和HF中的LV和RV中有15个公共DEG。这些基因的功能富集分析强调了细胞外基质和肌膜在CH和HF中的关键作用。最后,确定了三组轮毂基因,包括赖氨酸氧化酶(LOX)家族,成纤维细胞生长因子(FGF)家族和NADH-偶像性氧化还原酶(NDUF)家族,是从CH到HF的动态变化的必不可少的基因。