在过去十年中,转录激活因子样效应核酸酶和基于 CRISPR 的基因组工程彻底改变了我们的生物学方法。由于其高效性和易用性,现在几乎每个实验室都能够开发定制的敲除和敲入动物或细胞模型。尽管如此,产生转基因细胞通常需要一个选择步骤,通常通过抗生素或荧光标记来实现。选择标记的选择基于可用的实验室资源,例如细胞类型,还应考虑时间和成本等参数。在这里,我们提出了一种称为磁激活基因组编辑细胞分选的新型快速策略,根据磁性分选 Cas9 阳性细胞中存在的表面抗原(即 tCD19)的能力来选择转基因细胞。通过使用磁激活基因组编辑细胞分选,我们成功生成并分离了基因改造的人类诱导多能干细胞、原代人类成纤维细胞、SH-SY5Y 神经母细胞样细胞、HaCaT 和 HEK 293T 细胞。我们的策略扩展了基因组编辑工具箱,提供了一种快速、廉价且易于使用的替代现有选择方法的方法。
摘要:使用CRISPR-CAS9核酸酶进行基因组编辑是基于DNA双重断裂(DSB)的修复。在真核细胞中,DSB通过同源指导的修复(HDR),非同源末端连接(NHEJ)或微学介导的终端连接(MMEJ)途径重新加入。其中,人们认为NHEJ途径是主导的,并且发生在整个细胞周期中。已知基于NHEJ的DSB维修是错误的;但是,很少有研究深入研究内源基因。在这里,我们通过掺入外源性DNA寡核苷酸来量化基于NHEJ的DSB修复精度(称为NHEJ精度)。通过对DSB发生后的外源性DNA和内源性靶点之间的连接序列的分析,我们确定NHEJ准确性的平均值在HEK 293T细胞中的最大值约为75%。在深入的分析中,我们发现NHEJ的精度依赖于序列,并且DSB端的近端邻近基序(PAM)的值相对较低,低于PAM远端的DSB。此外,我们观察到插入突变比与NHEJ准确性程度之间存在负相关。我们的发现将扩大对CAS9介导的基因组编辑的理解。
了解 SARS-CoV- 2 感染机制并寻找潜在治疗方法是全球当务之急。使用定量系统药理学方法,我们确定了一组可重新利用和在研药物可作为 COVID- 19 的潜在治疗方法。这些药物是根据连接图筛选的 SARS-CoV- 2 感染的 A 549 细胞的基因表达特征推断出来的,并通过网络邻近性分析根据病毒-宿主相互作用组中的疾病模块确定了优先次序。我们还根据 ACE 2 过表达的 A 549 细胞的转录组,确定了旨在抑制重症 COVID- 19 患者过度炎症反应的免疫调节化合物。使用 SARS-CoV- 2 感染的 Vero-E 6 细胞进行的实验,以及使用 HEK 293 T 和 Calu- 3 细胞进行的探测 ACE 2 / SARS-CoV- 2 刺突蛋白介导的细胞融合的独立合胞体形成试验表明,几种预测化合物具有抑制活性。其中,沙美特罗、罗特林和 mTOR 抑制剂在 Vero-E 6 细胞中表现出抗病毒活性;丙咪嗪、林西替尼、己基间苯二酚、依折麦布和溴苯那敏阻碍了病毒进入。这些新发现为扩大用于治疗 COVID- 19 的化合物库提供了新途径。
电压门控钾通道在多种癌细胞(包括肺癌细胞)的细胞过程中发挥作用。我们前期鉴定并报道了一种来自印鼠客蚤唾液蛋白FS48,在HEK 293T细胞中检测时,其对K v 1.1-1.3通道表现出抑制活性。但FS48是否对表达K v 通道的癌细胞有抑制作用尚不清楚。本研究旨在通过膜片钳、MTT、划痕愈合、transwell、明胶酶谱、qRT-PCR和WB检测方法揭示FS48对K v 通道和NCI-H460人肺癌细胞的影响。结果表明,FS48虽然不能抑制NCI-H460细胞的增殖,但能以剂量依赖性方式有效抑制K v 电流、迁移和侵袭。此外,发现K v 1.1和K v 1.3 mRNA和蛋白质的表达显著降低。最后,FS48降低了MMP-9的mRNA水平,同时增加了TIMP-1的mRNA水平。本研究首次揭示了吸血节肢动物唾液衍生蛋白可以通过K v 通道抑制肿瘤细胞的生理活动。此外,FS48可以作为针对表达K v 通道的肿瘤细胞的靶向化合物。
该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关如何报告不良反应的第4.8节。1。药物产品的名称covid-19疫苗阿斯利康悬浮液悬挂于注射covid-19疫苗(chadox1-s [重组])2。定性和定量组成这些是每瓶8剂或10剂0.5 ml的多剂量小瓶(请参阅第6.5节)。一剂(0.5 mL)包含:编码SARS-COV-2尖峰糖蛋白(Chadox1-S) *的黑猩猩腺病毒,不少于2.5×10 8感染性单元(INF.U) *通过转基因修饰的人类胚胎肾脏(HEK)293 Cells和Reclys of Replys cells and Replys and Repompinant dna dna dna dna dna。该产品包含转基因的生物(GMO)。具有已知作用的赋形剂,每个剂量(0.5 mL)含有大约2 mg的乙醇。有关赋形剂的完整列表,请参见第6.1节。3。注射药物悬浮液(注射)。悬浮液无色至略带棕色,清晰至略微不透明,pH值为6.6。4。临床细节4.1治疗指示COVID-19 COVID-19S疫苗阿斯利康用于主动免疫以防止18岁及以上的个体中由SARS-COV-2引起的CoVID-19。
多酶抑制剂Z-VAD-FMK充当肽的抑制剂:N-糖酶(NGLY1),一种内糖苷酶,一种内吞糖苷酶,从渗透性降级(ERAD)(ERAD)(ERAD)中裂解N-连接的糖蛋白从糖蛋白(ER)中导出的糖蛋白。NGLY1的Z-VAD-FMK和siRNA介导的敲低(KD)抑制NGLY1的药理学N-聚会酶均诱导HEK 293个细胞中的GFP-LC3阳性点。在任何一种情况下都不观察到ER应力标记物的激活或活性氧(ROS)的诱导。此外,当观察细胞内存储释放时,CA 2 +处理不受影响。在小含量NGLY1抑制或NGLY1 KD的条件下,观察到自噬体形成的上调而不会观察到自噬型伏特的损害。富集自噬体揭示了可比的自噬体蛋白含量。基因本体分析 - 某些IPS表明涉及蛋白质翻译,定位和靶向,RNA降解和蛋白质复合物拆卸的因子的代表过多。自噬的上调代表了对NGLY1抑制或KD的细胞适应,并且在这些条件下,ATG13抑制作用的小鼠胚胎爆炸(MEFS)显示出降低的生存能力。相比之下,用pan-caspase抑制剂Q-VD-OPH处理不会诱导细胞自噬。因此,Z-VAD-FMK的实验因NGLY1抑制作用(包括诱导自噬)而变得复杂,而Q-VD-OPH则代表了一种替代性caspase抑制剂,而没有这种限制。
摘要:线粒体DNA(mtDNA)特别容易受到体细胞诱变的影响。潜在机制包括DNA聚合酶γ(POLG)误差和诱变剂(例如活性氧)的作用。在这里,我们研究了瞬时过氧化氢(H 2 O 2脉冲)对培养的HEK 293细胞MtDNA完整性的影响,并应用了Southern印迹,超深的短读和长阅读测序。在野生型细胞中,在H 2 O 2脉冲后30分钟,出现线性mtDNA片段,代表双链断裂(DSB),其末端的特征是短GC拉伸。完整的超涂层mtDNA物种在治疗后2-6小时内重新出现,并在24小时后几乎完全回收。与未经处理的细胞相比,H 2 O 2处理的细胞中BRDU掺入较低,这表明快速恢复与mtDNA复制无关,而是由单链断裂(SSB)快速修复和DSB生成的线性片段的降解所驱动的。遗传失活在外丝酶中降解的遗传降解有效POLG P.D274A突变细胞导致线性mtDNA片段的持续性,对SSB的修复无影响。总而言之,我们的数据突出了SSB修复和DSB降解的快速过程与氧化损伤后MTDNA的重新合成较慢之间的相互作用,这对MTDNA质量控制具有重要意义,对MTDNA质量控制和潜在的体细胞mTDNA删除。
摘要 SARS-CoV-2 非结构蛋白 1 (Nsp1) 包含一个 N 端结构域和由短连接区连接的 C 端螺旋。SARS-CoV-2 的 Nsp1 (Nsp1-C-ter) 的 C 端螺旋与 40S 核糖体亚基的 mRNA 进入通道结合并阻止 mRNA 进入,从而关闭宿主蛋白质合成。Nsp1 抑制宿主免疫功能,对病毒复制至关重要。因此,Nsp1 似乎是治疗的一个有吸引力的靶点。在本研究中,我们对美国食品药品监督管理局 (FDA) 批准的针对 Nsp1-C-ter 的药物进行了计算机筛选。在获得的最佳匹配中,孟鲁司特钠水合物与 Nsp1 结合的体外结合亲和力 (KD ) 为 10.8 ± 0.2 µM。在模拟运行中,它与 Nsp1-C-ter 形成稳定的复合物,结合能为 –95.8 ± 13.3 kJ/mol。孟鲁司特钠水合物还挽救了 Nsp1 在宿主蛋白质合成中的抑制作用,这通过萤火虫荧光素酶报告基因在细胞中的表达得到证明。重要的是,它显示出对 SARS-CoV-2 的抗病毒活性,并在表达 ACE2 的 HEK 细胞和 Vero-E6 细胞中降低了病毒复制。因此,我们建议以孟鲁司特钠水合物为先导分子,设计有效的抑制剂来帮助对抗 SARS-CoV-2 感染。
额颞痴呆(FTD)和肌萎缩性侧索硬化症(ALS)的最常见遗传原因是G 4 C 2重复扩展在C9orf72基因的内含子中。这种重复的扩展经历了双向转录,产生了感觉和反义重复的RNA物种。在所有阅读帧中,有义务和反义的重复RNA都经历重复相关的非AUG翻译,以生成五种不同的二肽重复蛋白(DPRS)。重要的是,毒性与感官和反义重复衍生的RNA和DPR既相关。这表明针对感官和反义重复RNA可能会提供最有效的治疗策略。涉及RNA的CRISPR-CAS13系统为同时定位多个RNA转录本的途径提供了有希望的途径,因为它们成熟了自己的引导阵列,因此可以从单个构造中靶向一个以上的RNA物种。我们表明,源自Ruminococcus flavefaciens(CASRX)的CRISPR-CAS13D可以成功地将C9orf72 sense和反义重复记录和DPR降低到过度表达C9orf72重复的HEK细胞中的背景水平。CRISPR-CASRX还显着降低了三种独立的C9ORF72患者衍生的IPSC-神经元系中的内源性和反义重复RNA和DPR,而没有可检测到的脱靶效应。为了确定CRISPR-CASRX在体内是否有效,我们使用AAV递送处理了两种不同的C9orf72重复小鼠模型,并观察到在有意义和反义重复的转录本上都显着降低。这项工作共同介绍了将RNA靶向CRISPR系统作为C9ORF72 ALS/FTD的治疗方法的潜力。
深度测序技术的进步表明,人类基因组的大部分都被积极地转录成 RNA。我们的实验室专注于表征基因组中产生的最大 RNA 组,即长链非编码 RNA (lncRNA) 及其相关的蛋白质结合伙伴。迄今为止,只有 3% 的 lncRNA 经过了功能验证。利用长读和短读测序技术,我们生成了巨噬细胞活化的异构体水平转录组图谱,该图谱表征了所有炎症诱导基因。利用 CRISPR 抑制技术,我们进行了系统无偏筛选,以确定与巨噬细胞内炎症功能相关的功能相关 lncRNA。我们确定 lncRNA LOUP 是一种多功能基因,涉及先天免疫的多个方面。我们表明 LOUP 可以作为增强子来调节其邻近蛋白质先锋因子 SPI1 (PU.1)。有趣的是,SPI1 可作为转录因子 NF-kB 的正调节剂,而我们确定 LOUP 是 NF-kB 的强负调节剂。我们发现 LOUP 定位于细胞质并编码一个短的开放阅读框肽。Ribo-seq 数据表明该区域是主动翻译的。我们将肽插入到与 GFP 同框的质粒中,它在 HEK 293 细胞中被主动翻译。为了确定该肽是否能在先天免疫中发挥作用,我们利用活性 CRISPR 专门针对该肽,并表明该区域确实可以作为 NF-kB 的负调节剂。总之,我们已确定 LOUP 是免疫反应的重要调节剂。它具有多种功能,顺式作用以调节 SPI1 并编码负调节 NF-kB 信号的小肽。