摘要:缺氧和抑制性肿瘤微环境 (TME) 都是肌层浸润性膀胱癌 (MIBC) 的独立负面预后因素,会导致治疗耐药性。缺氧已被证明可通过募集抑制抗肿瘤 T 细胞反应的髓样细胞来诱导免疫抑制性 TME。最近的转录组分析表明,缺氧会增加膀胱癌中的抑制和抗肿瘤免疫信号和浸润。本研究旨在探讨缺氧诱导因子 (HIF)-1 和 -2、缺氧与 MIBC 中免疫信号和浸润之间的关系。进行 ChIP-seq 以鉴定在 1% 和 0.1% 氧气中培养 24 小时的 MIBC 细胞系 T24 基因组中的 HIF1 α、HIF2 α 和 HIF1 β 结合。使用了在 1%、0.2% 和 0.1% 氧气下培养 24 小时的四种 MIBC 细胞系 (T24、J82、UMUC3 和 HT1376) 的微阵列数据。使用两组膀胱癌队列 (BCON 和 TCGA) 的计算机模拟分析研究了高氧和低氧肿瘤之间的免疫环境差异,并过滤以仅包括 MIBC 病例。将 GO 和 GSEA 与 R 包“limma”和“fgsea”一起使用。使用 ImSig 和 TIMER 算法进行免疫反卷积。所有分析均使用 RStudio。在缺氧条件下,HIF1 α 和 HIF2 α 分别与 ~11.5–13.5% 和 ~4.5–7.5% 的免疫相关基因结合(1–0.1% O 2 )。 HIF1 α 和 HIF2 α 均与与 T 细胞活化和分化信号通路相关的基因结合。HIF1 α 和 HIF2 α 在免疫相关信号传导中具有不同的作用。HIF1 与干扰素产生有关,而 HIF2 与一般细胞因子信号传导以及体液和 Toll 样受体免疫反应有关。中性粒细胞和髓系细胞信号传导在缺氧条件下丰富,同时与 Tregs 和巨噬细胞相关的标志性通路也丰富。高缺氧 MIBC 肿瘤抑制和抗肿瘤免疫基因特征的表达增加,并与免疫浸润增加有关。总体而言,缺氧与抑制和抗肿瘤相关免疫信号传导和免疫浸润的炎症增加有关,如在体外和原位使用 MIBC 患者肿瘤所见。
摘要:神经胶质瘤的侵袭性和对治疗的抵抗性使其成为肿瘤学的一个主要问题。尽管医学科学取得了重大进步,但神经胶质瘤的预后仍然不容乐观,手术、放疗 (RT) 和化疗 (CT) 等传统治疗方法经常被证明无效。在发现神经胶质瘤干细胞 (GSC) 后,将神经胶质瘤视为均质肿块的传统观点发生了变化。GSC 对肿瘤生长、治疗抵抗和复发至关重要。这些细胞独特的分化和自我更新能力正在改变我们对神经胶质瘤生物学的认识。本系统文献综述旨在揭示与 GSC 相关的神经胶质瘤进展的分子驱动机制。系统综述遵循 PRISMA 指南,在 PubMed、Ovid MED-LINE 和 Ovid EMBASE 上进行了彻底的文献检索。第一次文献检索于 2024 年 3 月 1 日进行,搜索更新于 2024 年 5 月 15 日。搜索使用 MeSH 术语和布尔运算符,重点关注与 GCS 介导的胶质瘤进展相关的分子机制。纳入标准包括英文研究、临床前研究和临床试验。最初确定了 957 篇论文,其中 65 篇从 2005 年到 2024 年的研究最终被纳入审查。主要 GSC 模型分布按频率降序排列:U87:20 项研究(32.0%);U251:13 项研究(20.0%);A172:4 项研究(6.2%);和 T98G:2 项研究(3.17%)。从最频繁到最不频繁,主要 GSC 通路的分布如下:Notch:8 项研究(12.3%);STAT3:6 项研究(9.2%); Wnt/β-catenin:6 项研究(9.2%);HIF:5 项研究(7.7%);PI3K/AKT:4 项研究(6.2%)。分子效应的分布(从最常见到最不常见)如下:抑制分化:22 项研究(33.8%);增加增殖:18 项研究(27.7%);增强侵袭能力:15 项研究(23.1%);增加自我更新:5 项研究(7.7%);抑制细胞凋亡:3 项研究(4.6%)。这项研究突出了 GSC 异质性和胶质母细胞瘤微环境中的动态相互作用,强调需要采取量身定制的方法。影响 GSC 行为的一些关键通路是 JAK/STAT3、PI3K/AKT、Wnt/β-catenin 和 Notch。治疗可以针对这些通路。这项研究敦促进行更多研究以填补 GSC 生物学方面的知识空白,并将研究结果转化为有用的治疗方法,以改善 GBM 患者的治疗结果。
根据 2020 年估计的新增癌症病例,肾癌是第八大癌症类型 ( 1 , 2 )。男性确诊人数 (44,120 人) 是女性 (29,700 人) 的两倍 ( 2 )。肾细胞癌 (RCC) 是主要类型,占肾癌的 85% ( 2 , 3 )。RCC 细分为透明细胞 RCC 和非透明细胞 RCC 组织学亚型。透明细胞 RCC (ccRCC) 占 RCC 的 75% ( 4 )。大约三分之二的 RCC 患者(疾病局部且主要接受手术治疗)的 5 年生存率为 93% ( 2 )。这些患者中约 50% 会出现复发 ( 5 )。三分之一的 RCC 患者在诊断时有转移性疾病的证据 ( 2, 6 )。区域扩散患者的 5 年生存率为 70%,而远处转移患者仅为 12% ( 2 )。转移性 RCC 的治疗包括免疫调节、分子靶向和免疫检查点抑制剂等进展。这些药物改善了转移性 RCC 的治疗效果,2008 年至 2017 年死亡率每年下降 1% ( 2 , 7 )。大约 4–17% 的 RCC 患者会出现脑转移,其中约 50% 的患者出现多发性病变 ( 5 , 8 , 9 )。未经治疗的脑转移性 RCC 患者的中位生存期约为 3.2 个月 ( 10 )。包括 RCC 在内的任何原发部位脑转移的治疗都涉及手术和放射治疗 ( 10 , 11 )。手术主要用于治疗局限性脑部疾病 ( 12 )。多发性脑损伤通常用 WBRT 治疗(10、12、13)。虽然 RCC 病理被认为具有放射抗性,但 WBRT 已显示出略微改善的局部控制率(高达 60%)和 3 至 7 个月的中位生存期(9、14、15)。另一方面,SRS 报告的局部控制率要好得多,从 83% 到 96%,中位生存期在 9.5 至 13 个月之间(5、16-22)。在 SRS 中添加 WBRT 对控制远处脑部疾病没有帮助(16、23)。对比研究未报告联合治疗相对于单独使用 SRS 有任何生存优势(24、25)。因此,治疗模式随着时间的推移发生了变化,更多地使用 SRS 代替 WBRT,并且添加全身治疗已显示出 RCC 和脑转移瘤患者的生存率提高(26)。已批准用于治疗 mRCC 的分子靶向药物主要针对两个靶点:与血管生成相关的血管内皮生长因子 (VEGF) 和哺乳动物雷帕霉素靶点 (mTOR),后者是细胞增殖的关键成分,已知可上调缺氧诱导因子 (HIF) 的表达 ( 27 )。自 2005 年以来,FDA 批准了几种抑制这两个因子之一的新型药物用于治疗 mRCC,称为 VEFGR 抑制剂和 mTOR 抑制剂;此外还有免疫治疗药物 ( 7 , 27 – 29 )。
我们建议在现场直播培训日之前完成按需课程。此模块是培训的强制性部分,以便成功完成它。
2024年10月引言爆发高度致病的禽流感Hpai A(H5N1)影响了200多个奶牛牛群,并于2024年在美国导致零星的人类病例。到目前为止,这种爆发中的人类病例是温和的,到目前为止,该病毒尚未证明有效结合在人类上呼吸道中占主导的受体的能力。然而,流感病毒具有进化的潜力,而在野生鸟类中,(H5N1)病毒在全球范围广泛普遍。因此,在野生鸟类,家禽,哺乳动物和全世界的野生鸟类健康和动物健康方面,对这些病毒的持续全面和协调的多个部门监测对于确定公共卫生风险至关重要。要控制这次爆发并最大程度地减少其当前和潜在影响,我们必须继续更好地理解这种情况的原因和方式,以及需要采取哪些措施来更好地保护人们和动物的健康和安全,并确保食物供应的安全。今天,美国政府正在阐述其明确的研究重点,以解决这一爆发。 来自美国政府的专家概述了一项研究计划,以继续进一步了解我们对A(H5N1)病毒的理解,并指导反应活动以阻止爆发的扩张。 这些优先事项还将指导更广泛的全球科学界。 这种合作的,全面的,一个健康的反应旨在解决动物和人类健康中出现的科学问题。 动物健康今天,美国政府正在阐述其明确的研究重点,以解决这一爆发。来自美国政府的专家概述了一项研究计划,以继续进一步了解我们对A(H5N1)病毒的理解,并指导反应活动以阻止爆发的扩张。这些优先事项还将指导更广泛的全球科学界。这种合作的,全面的,一个健康的反应旨在解决动物和人类健康中出现的科学问题。动物健康动物,农业研究服务局(ARS)是美国农业部(USDA)内部研究机构,是家禽和牲畜流感研究的领先权力,与其他机构,学术界和研究机构合作。此外,其他USDA机构包括动物和植物健康检查服务(APHIS),食品安全检查局(FSIS),国家食品和农业研究所(NIFA),一直在与姊妹机构以及各自的宣教领域进行协调,通过实地研究,诊断和应用研究协会(HIS SAFICTISICS),以及HIS ISSIFICS ISSISTINIC,以及HIS ISSIFICS ISSISTINIC,以及HIS -FORKIANINCE ISSIFISS,以及HER FORKIANIAN,FOACSINES(HIF)进行研究(HIN)。牛群,牛群之间以及乳制品和家禽场所之间的病毒传播和危险因素。在人类健康方面,美国卫生与公共服务部(HHS)被控保护公共卫生和粮食供应的安全。HHS站在一个由四个HHS机构组成的响应团队 - 战略准备和反应管理(ASPR),疾病控制与预防中心(CDC)(CDC),食品和药物管理局(FDA)和国家过敏和传染病研究所(NIAID)(NIAID)在国立国家医学研究所(NIH)(NIH1) - 与Health Institutes of Health(NIH)一起工作(NIH1) - 我们与Us cave a Vir a Vir us wir us wir us a。流行病学以及影响疾病发病机理和传播的因素,减轻风险并防止人和动物之间的传播,确保美国的粮食供应保持安全,支持临床前和临床发育,监管批准以及采购治疗,疫苗和H5病毒的诊断。响应正在进行的A(H5N1)爆发,机构间小组优先考虑研究以下目标:目标1:了解A(H5N1)病毒的感染,发病机理,传播和分子流行病学,并减轻人们的风险以防止人和动物传播。
缩写:ANG,血管生成素;ANXA1,膜联蛋白A1;ATP,三磷酸腺苷;ATRA,全反式维甲酸;BCC,乳腺癌细胞;BDL,胆管结扎;BSA,牛血清白蛋白;BXPC-3,胰腺癌细胞系;CAF,癌相关成纤维细胞;CAP,可裂解两亲肽;CD26,二肽基肽酶-4;CD,分化簇;CLSM,共聚焦激光扫描显微镜;CM-101,胶原蛋白靶向探针;CPP,细胞穿透肽;CSC,癌症干细胞;CTC,循环肿瘤簇;CXCR,趋化因子受体;DCE,动态对比增强;DGL,树枝状移植聚-L-赖氨酸; DOTA,2,2 0,2 00,2 000-(1,4,7,10-四氮杂环十二烷-1,4,7,10-四基)四乙酸;DOX,阿霉素;DRP,损伤反应程序;DTPA,二乙烯三胺五乙酸酯;EA,鞣花酸;ECM,细胞外基质;EGFR,表皮生长因子受体;EMT,上皮-间质转化;EPR,增强渗透和滞留;ER,雌激素受体;FAK,粘着斑激酶;FAP,成纤维细胞活化蛋白;FAPI,FAP 抑制剂;FDA,食品药品监督管理局;FDG,氟脱氧葡萄糖;FITC,异硫氰酸荧光素;FOLFIRI,5-氟尿嘧啶,亚叶酸,伊立替康; FOLFIRINOX,5-氟尿嘧啶、亚叶酸钙、伊立替康和奥沙利铂的组合;FPR2,甲酰肽受体 2;FSP1,成纤维细胞特异性蛋白 1;FU,5-氟尿嘧啶;GA,18b-甘草次酸;GBq,千兆贝克勒尔;GEM,吉西他滨;GPER,G 蛋白偶联雌激素受体;GSH,谷胱甘肽;HA,透明质酸;HBSS,汉克斯平衡盐溶液;HER2,人表皮生长因子受体 2;HGF,肝细胞生长激素;HIF,缺氧诱导因子;HRCT,高分辨率计算机断层扫描;HSA,人血清白蛋白;HSP47+,热休克蛋白 47; HSPG2,硫酸肝素蛋白聚糖 2;HSTS26T,人软组织癌;HSV,单纯疱疹病毒;ID/g,每克注射剂量;IFN,干扰素;IFP,间质液体压力;IGF1,胰岛素样生长因子;IL,白细胞介素;IPF,特发性肺纤维化;IPI-926,Hedgehog 通路抑制剂;ITGA11,整合素亚基 α 11;ITGA5,整合素亚基 α 5;JAK,Janus 激酶;JNK,Jun N - 末端激酶;KPC,胰腺导管腺癌的临床相关模型;KRAS,Kirsten 大鼠肉瘤病毒;LCP,脂质磷酸钙纳米颗粒;LOXL2,赖氨酰氧化酶样 2; LPD,脂质包被的鱼精蛋白 DNA 复合物;LPP,脂肪瘤首选伴侣;LST-Lip,氯沙坦包裹的脂质体;LXA4,脂氧素 A4;MAPK,丝裂原活化蛋白激酶;MCT4,单羧酸转运蛋白 4;MET,肝细胞生长因子受体;MHC,主要组织相容性复合体;MMP,基质金属蛋白酶;MPS,单核吞噬细胞系统;MRI,磁共振成像;MSC,间充质干细胞;mTOR,哺乳动物雷帕霉素靶蛋白;MU89,人黑色素瘤;NF,正常成纤维细胞;NH 2,胺基;NK,自然杀伤细胞;NO 2,一氧化氮;NODAGA,1,4,7-三氮杂环壬烷,1-戊二酸-4,7-乙酸;NP,纳米粒子;NSCLC,非小细胞肺癌;PAMAM,聚酰胺胺;PD-1,程序性细胞死亡蛋白 1;PDAC,胰腺导管腺癌;PDGF,血小板衍生生长因子;PDGFR,PDGF 受体;PDT,光动力疗法;PDX,患者来源的异种移植;PEG,聚乙二醇;PEGPH20,重组人透明质酸酶 PH20 的聚乙二醇化形式;PET,正电子发射断层扫描;PFT,周细胞向成纤维细胞转变;PGE2,前列腺素 E2;PP,聚乙二醇-聚己内酯;PSC,胰腺星状细胞;PSMA,前列腺特异性膜抗原;PTC,乳头状甲状腺癌;PTX,紫杉醇; QD,量子点;QP,槲皮素磷酸盐;RGD,三肽精氨酸-甘氨酸-天冬氨酸;RNA,核糖核酸;ROCK,Rho 相关蛋白激酶;ROS,活性氧;RUNX3,Runt 相关转录因子 3;SATB,特殊 AT 富集序列结合蛋白 1;SBRT,立体定向放射治疗;SDF-1,基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体; TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1;VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献均等。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。基质衍生因子 1;a -SMA,α 平滑肌;SMO,平滑受体;SNAI1,Snail 家族转录抑制因子 1;SPECT,单光子发射计算机断层扫描;SRBC,富含基质的膀胱癌;STAT,信号转导和转录激活因子;SUV,标准化摄取值;TAM,肿瘤相关巨噬细胞;TGF- b,转化生长因子;TIE2,血管生成素受体;TKI,酪氨酸激酶抑制剂;TME,肿瘤微环境;TNC,腱糖蛋白 C;TNF,肿瘤坏死因子;TRAIL,肿瘤坏死因子相关凋亡诱导配体;TSL,热敏脂质体;TSP-1,血小板反应蛋白-1;UMUC3,富含基质的膀胱癌细胞系;VCAM-1,血管细胞粘附分子 1; VDR,维生素 D 受体;VEGF,血管内皮生长因子;VEGFR,VEGF 受体;YAP,是相关蛋白 1。⇑ 通讯作者。电子邮箱地址:j.prakash@utwente.nl (J. Prakash)、tlammers@ukaachen.de (T. Lammers)、smriti.singh@mr.mpg.de (S. Singh)。1 贡献相同。