造血干细胞和祖细胞(HSPC)依靠细胞间信号传导来维持和调整其血液和免疫细胞的产生。此过程发生在半流利的骨髓中,载有数十种不断迁移和相互作用的细胞类型。为了阐明造血造血的基础细胞相互作用和信号转导的动态网络,我们通过整合有关配体和受体表达,细胞类型丰度和细胞空间定位的数据来测量细胞细胞空间相互作用概率(Cellip)的算法。使用新的和已发表的鼠标数据集,我们验证了细胞IP,并发现了指示造血的反馈机制的信号转导。此外,我们在同一造血阶段确定了跨个别HSPC的信号通路之间的显着相关性。这些途径相关性阐明了造血作用的细胞和信号网络的组织,从而通过与已建立的途径揭示了新调节剂。信号定量和相关数据可通过造血界面信号探索器(HISE)获得。关键字:造血,造血茎和祖细胞,骨髓,细胞间信号传导,信号网络,细胞 - 细胞通信,单细胞RNA测序,细胞 - 细胞空间相互作用,反馈机制,PARS PATH
弗里德赖希共济失调 (FRDA) 是一种常染色体隐性神经退行性疾病,由 frataxin (FXN) 基因内含子 1 中的 GAA 重复扩增引起,导致线粒体铁结合蛋白 frataxin 的表达显著降低。我们之前报告说,同基因造血干细胞和祖细胞 (HSPC) 移植可防止 FRDA 小鼠模型 YG8R 中的神经退行性。我们表明,挽救机制是由功能性 frataxin 从 HSPC 衍生的小胶质细胞/巨噬细胞转移到神经元/肌细胞所介导的。在本研究中,我们报告了使用 CRISPR-Cas9 系统进行 FRDA 自体 HSPC 移植的第一步。我们首次鉴定出一对 CRISPR RNA(crRNA),它们可有效消除人类 FRDA 淋巴母细胞中的 GAA 扩增,恢复 frataxin 表达的非病理水平,并使线粒体活动正常化。我们还优化了从健康和 FRDA 患者外周血中分离的 HSPC 中的基因编辑方法,并证明基因编辑细胞在体外和体内造血正常。该过程不会诱发细胞毒性作用或重大脱靶事件,但在基因编辑细胞中观察到 p53 介导的细胞增殖延迟。这项研究为将基因校正的 HSPC 自体移植用于 FRDA 的临床转化奠定了基础。
弗里德赖希共济失调 (FRDA) 是一种常染色体隐性神经退行性疾病,由 frataxin (FXN) 基因内含子 1 中的 GAA 重复扩增引起,导致线粒体铁结合蛋白 frataxin 的表达显著降低。我们之前报告说,同基因造血干细胞和祖细胞 (HSPC) 移植可防止 FRDA 小鼠模型 YG8R 中的神经退行性。我们表明,挽救机制是由功能性 frataxin 从 HSPC 衍生的小胶质细胞/巨噬细胞转移到神经元/肌细胞所介导的。在本研究中,我们报告了使用 CRISPR-Cas9 系统进行 FRDA 自体 HSPC 移植的第一步。我们首次鉴定出一对 CRISPR RNA(crRNA),它们可有效消除人类 FRDA 淋巴母细胞中的 GAA 扩增,恢复 frataxin 表达的非病理水平,并使线粒体活动正常化。我们还优化了从健康和 FRDA 患者外周血中分离的 HSPC 中的基因编辑方法,并证明基因编辑细胞在体外和体内造血正常。该过程不会诱发细胞毒性作用或重大脱靶事件,但在基因编辑细胞中观察到 p53 介导的细胞增殖延迟。这项研究为将基因校正的 HSPC 自体移植用于 FRDA 的临床转化奠定了基础。
钙网蛋白 ( CALR ) 突变是 JAK2 野生型 (WT) 骨髓增生性肿瘤 (MPN)(包括原发性血小板增多症和骨髓纤维化)的主要致癌驱动因素,其中突变型 (MUT) CALR 越来越多地被认为是合适的突变特异性药物靶点。然而,我们目前对其作用机制的理解来自于小鼠模型或永生化细胞系,其中跨物种差异、异位过表达和缺乏疾病渗透性阻碍了转化研究。在这里,我们描述了第一个人类基因工程模型 CALR MUT MPN,使用 CRISPR/Cas9 和腺相关病毒载体介导的敲入策略在原代人类造血干细胞和祖细胞 (HSPC) 中建立可重复和可追踪的体外和异种移植小鼠表型。我们的人源化模型重现了许多疾病特征:不依赖血小板生成素的巨核细胞生成、髓系谱系偏斜、脾肿大、骨髓纤维化和巨核细胞引发的 CD41 + 祖细胞扩增。令人惊讶的是,引入 CALR 突变会强制人类 HSPC 进行早期重编程并诱导内质网应激反应。观察到的分子伴侣补偿性上调揭示了新的突变特异性脆弱性,CALR 突变细胞对 BiP 分子伴侣和蛋白酶体的抑制具有优先敏感性。总体而言,我们的人源化模型改进了纯鼠模型,并为在人类环境中测试新型治疗策略提供了现成的基础。
Hepatocytes 10.1016/j.cell.2018.11.012 30500539 HFF-1 10.1016/j.isci.2024.109708 38706856 Hippocampal mouse tissue 10.1016/j.neuint.2020.104933 33290798 hiPSCs 10.1016/j.xpro.2023.102073 36853722 hiPSC-cardiomyocyte 10.1152/physiolgenomics.00021.2020 32567507 hiPSC-derived cardiac pericytes 10.1016/j.xpro.2023.102256 37119139 hiPSC-derived NSCs 0.1186/s12987-023-00471-y 37907966 HIPSCS WTC11 10.1101/2024.02.06.579232 38370715人肾上腺细胞10.1210/clinem/dgac394 35796577人乳腺组织10.1038/s41598-018-018-36927-7 30679562 10.1038/s41467-023-37379-y 36973261人CD34+ HSPCS 10.21769/bioprotoc.4661 37113334人类胚胎干细胞(HESC) 34065661 Human fibroblast 10.1016/j.bbrep.2021.101169 34786495 Human hematopoietic stem cells 10.1016/j.omtm.2017.11.008 29322065 Human leukocytes 10.3390/cells10040843 33917916 Human liver cancer cell line (HepG2) 10.18433/j3vk5g 26626238人类鼻上皮细胞10.1016/j.celrep.2024.114076 38607917人类卵巢单细胞10.1038/s41467-019-019-11036-9 31320652人围核细胞(
在纽约纽约的自然通讯中 - 2024年6月12日 - Cellectis(“公司”)(Euronext增长:ALCLS-NASDAQ:CLLS),这是一家临床阶段的生物技术公司,使用其先驱基因编辑平台开发了生命和Gene Therapies,该平台开发了生命和Gene therapies,该平台在Antial nation natire natival nation nation nation nation nation nation nation则可宣布,该出口涉及一项出口,该出口涉及一项启发性的出口。镰状细胞疾病的基因治疗方法。 镰状细胞病(SCD)是全球最常见的遗传疾病之一。 SCD是由HBB基因中的单点突变引起的,该基因编码了血红蛋白(HB)的β亚基。 通常,红细胞采用圆盘状的形状,使它们可以轻松地通过血管移动并在整个体内输送氧气。 在镰状细胞疾病中,红细胞变成新月形或“镰状”形状,功能失调的状态会损害血流,氧气递送和触发多种使人衰弱的症状,包括激烈的疼痛危机。 Cellectis利用TALEN®技术和非病毒基因修复模板的递送来开发造血茎和祖细胞(HSPC)中临床相关的基因编辑过程。 此过程可以具有高精度,特异性和最小基因组不良事件的有效HBB基因校正。 将此HBB基因校正过程应用于SCD患者-HSPCS导致成熟的红细胞中正常成年血红蛋白的50%表达超过50%,而在不诱导β-丘脑血症表型的情况下矫正了镰状表型。 编辑的HSPC在免疫缺陷的鼠模型中有效地植入了,并保持了与HBB基因校正事件的临床相关水平。在纽约纽约的自然通讯中 - 2024年6月12日 - Cellectis(“公司”)(Euronext增长:ALCLS-NASDAQ:CLLS),这是一家临床阶段的生物技术公司,使用其先驱基因编辑平台开发了生命和Gene Therapies,该平台开发了生命和Gene therapies,该平台在Antial nation natire natival nation nation nation nation nation nation nation则可宣布,该出口涉及一项出口,该出口涉及一项启发性的出口。镰状细胞疾病的基因治疗方法。镰状细胞病(SCD)是全球最常见的遗传疾病之一。SCD是由HBB基因中的单点突变引起的,该基因编码了血红蛋白(HB)的β亚基。通常,红细胞采用圆盘状的形状,使它们可以轻松地通过血管移动并在整个体内输送氧气。在镰状细胞疾病中,红细胞变成新月形或“镰状”形状,功能失调的状态会损害血流,氧气递送和触发多种使人衰弱的症状,包括激烈的疼痛危机。Cellectis利用TALEN®技术和非病毒基因修复模板的递送来开发造血茎和祖细胞(HSPC)中临床相关的基因编辑过程。此过程可以具有高精度,特异性和最小基因组不良事件的有效HBB基因校正。将此HBB基因校正过程应用于SCD患者-HSPCS导致成熟的红细胞中正常成年血红蛋白的50%表达超过50%,而在不诱导β-丘脑血症表型的情况下矫正了镰状表型。编辑的HSPC在免疫缺陷的鼠模型中有效地植入了,并保持了与HBB基因校正事件的临床相关水平。这个全面的临床前数据包为自体基因校正的HSPC的治疗应用奠定了阶段。“TALEN®技术,非病毒DNA修复模板设计和Cellectis的脉冲专有电动系统的独特组合使我们能够在长期的血小质量干细胞中建立精确,有效且与临床相关的HBB基因矫正过程,从SCD患者进行了SCD Celtien Celen Valton,Phien vice,Vice,Vice。“ SCD是一种毁灭性的血液疾病,影响了全球数百万个人。TALEN®基因治疗方法可以代表一种新的替代治疗方法,尤其是对于治疗方法有限的患者。此基因编辑过程具有强大的治疗潜力,因为它可以轻松地用于纠正与许多其他遗传疾病相关的点突变。”
化学疗法或内源性醛。ICL的形成触发FA核心综合以定位于DNA病变,然后募集其他含FA蛋白质的复合物和ICL修复酶(4)。FA基因中的不活性突变导致无法修复ICL,从而导致杂种不稳定性。 FA造血干细胞和祖细胞(HSPC)中的DNA损伤会激活MYC和遗传毒性应激/TP53途径,并诱导炎症的炎性细胞因子信号传导(1,5,6)。 通过先前未定义的下流事件,这些变化驱动了FA中的HSPC损失和/或血液系统恶性肿瘤。 在JCI的这个问题中,Casado等。 通过识别免疫介导的机制来提供这种缺失的下游链接,通过该机制激活DNA损伤途径会导致BMF(7)(图1)。FA基因中的不活性突变导致无法修复ICL,从而导致杂种不稳定性。FA造血干细胞和祖细胞(HSPC)中的DNA损伤会激活MYC和遗传毒性应激/TP53途径,并诱导炎症的炎性细胞因子信号传导(1,5,6)。通过先前未定义的下流事件,这些变化驱动了FA中的HSPC损失和/或血液系统恶性肿瘤。在JCI的这个问题中,Casado等。通过识别免疫介导的机制来提供这种缺失的下游链接,通过该机制激活DNA损伤途径会导致BMF(7)(图1)。
结果进行临床前实验,用CRISPR-CAS9和GRNA-68编辑的CD34+ HSPC(从健康的供体和镰状细胞疾病的疾病中获得)持续了靶向编辑,没有脱离靶向突变,并产生了高水平的胎儿血红蛋白,在体外分化或Xenotransplansplansplansplansplansplansationsmunodefi-ccientfi- c ccientfi- cccientfi- c c c cccientfii cantecientfi- c。在研究中,三名参与者在肌电调节后接受了自体OTQ923,并进行了6至18个月的遵循。在随访期结束时,所有参与者都植入和稳定诱导胎儿血红蛋白(胎儿血红蛋白,占总血红蛋白的百分比,19.0至26.8%),胎儿血红蛋白在红细胞中广泛分布在红细胞中(F细胞,红细胞为f,f lys aft y light tym a 69.7至87.8%)。在随访期间镰状细胞疾病的表现减少。
我们的目标是利用腺嘌呤碱基编辑器,通过介导 AT 到 GC 碱基的转化,在特定靶位点的人类 CD34+ 造血干细胞和祖细胞 (HSPC) 中产生单核苷酸多态性,从而治疗镰状细胞病。虽然离体基因编辑方法显示出巨大的治疗前景,但由于需要自体造血干细胞 (HSC) 移植来递送离体编辑的细胞,因此获取途径有限。为了进一步增加有资格接受碱基编辑治疗的患者数量,我们正在开发一种替代方法,通过非病毒递送方法将碱基编辑器直接递送到体内的 HSC。脂质纳米颗粒 (LNP) 是一种经过临床验证的非病毒方法,可以递送核酸有效载荷,从而可以避免与离体方法相关的挑战,包括移植编辑的 CD34+ HSPC。
基因组编辑技术不仅提供了研究基本细胞系统功能的前所未有的机会,而且还可以改善几种临床应用的结果。在这篇综述中,我们分析了从基础研究和临床角度来调查免疫系统的各种基因编辑技术。我们讨论了可编程核酸酶开发的最新进展,例如锌 - 纤维核酸酶(ZFN),转录激活剂样效应核酸酶(TALEN)和定期间隔的短距离短palindromic重复(CRISPR) - cas-cas相关核酶。我们还讨论了可编程核酸酶及其衍生试剂的使用,例如通过基因破坏,插入和重写T细胞和其他免疫成分的基础编辑工具来设计免疫细胞,例如天然杀手(NKS)和造血干细胞和祖细胞(HSPCS)。此外,关于嵌合抗原受体(CAR),我们描述了不同的基因编辑工具如何使健康的供体细胞可用于CAR T疗法,而不是自体细胞,而无需危害移植物抗旋转疾病或拒绝,从而导致收养细胞治疗成本降低,并立即治疗患者。我们特别注意将治疗性转基因(例如汽车)的递送到内源性基因座,以防止附带损害并提高治疗有效性。最后,我们审查了包括免疫系统重新利用在内的创新创新,这些创新促进了临床癌症免疫疗法框架内的安全和有效的基因组手术。