A selection of topics from the following: network security, computer security, malicious software, access control, firewall, intrusion detection systems, classical cryptography, symmetric-key encryption, DES, AES, public key cryptography, digital signature, digital certificate, message authentication, hash functions, RSA, ECC, SHA-1, SHA-256, PKI, authentication and key establishment protocols, SSL,PEM,PGP,IPSEC,IKE,E-CASH,MICROPAYEMENT,SET,电子投票,电子拍卖,智能卡等
对称密钥算法(有时称为秘密密钥算法)使用单个密钥来应用加密保护以及删除或检查保护(即,同一个密钥用于加密操作及其逆操作)。例如,用于加密数据(即应用保护)的密钥也用于解密加密数据(即删除保护)。在加密的情况下,原始数据称为明文,而数据的加密形式称为密文。如果要保护数据,则必须对密钥保密。已批准了几类对称密钥算法:基于分组密码算法的算法(例如 AES)和基于使用哈希函数的算法(例如基于哈希函数的密钥哈希消息认证码)。
基于修改的Diffie-Hellman(DH)协议,考虑了两个通讯员之间通过开放通信通道之间的键分配方案。通讯员通过受信任的实体进行交流。攻击者可以控制通讯员和通讯员之间与信任机构(TA)之间的通信通道,并在那里执行主动攻击,包括中间攻击。DH身份验证协议。提出了基于通用哈希函数类别的形式化的PUF模型。也就是说,建议使用Wegman和Carter开发的严格普遍哈希功能类别。 可能证明了可能的PPU数量对答案数量的多项式依赖性。 适用于身份验证系统的PPU的要求。 该协议已经进行了分析,并已证明其安全性。也就是说,建议使用Wegman和Carter开发的严格普遍哈希功能类别。可能证明了可能的PPU数量对答案数量的多项式依赖性。适用于身份验证系统的PPU的要求。该协议已经进行了分析,并已证明其安全性。
在对称键密码学的设计中,克劳德·香农(Claude Shannon)在他的开创性论文“交流理论” [21]中引入了“混乱和扩散”的概念。混淆层隐藏了密钥和密文之间的关系,而扩散层的目标是掩盖密文和纯文本之间的关系。可以通过多余[22]或使用最大距离可分离(MDS)矩阵来实现完美的扩散。MDS矩阵由于其最大分支数量提供了完美的扩散。因此,MDS Ma-Trices在防止块和线性攻击的安全性和线性攻击方面起着重要作用。许多现代时代的密码,例如AES [10],两个菲斯[20],Square [9],Shark [18]等,以及Hash功能,例如Whirlpool [1],Photon [12]依靠MDS矩阵来增强安全性。
涉及机密性,完整性和身份验证的所有安全解决方案的基石是密码学。Synopsys' Cryptography IP including symmetric and hash cryptographic engines, Public Key Accelerators (PKAs), True Random Number Generators (TRNGs) and Physical Unclonable Function (PUF), are silicon-proven, standards-compliant solutions providing the essential building blocks of secure systems.The hardware and software security implementations are easily configured, cover a wide spectrum of size and performance combinations, and are available in different architectures, such as look-aside or flow-through.每个加密核心可以用作安全协议加速器和嵌入式安全模块的构件。
•完整的套件B支持•不对称:RSA,DSA,DIFIE-HELLMAN,椭圆曲线加密(ECDSA,ECDH,ED25519,ECIES),命名,用户定义和Brainpool Curves,kcdsa等 more • Hash/Message Digest/HMAC: SHA-1, SHA-2, SHA-3, SM2, SM3, SM4 and more • Key Derivation: SP800-108 Counter Mode • Key Wrapping: SP800-38F • Random Number Generation: designed to comply with AIS 20/31 to DRG.4 using HW based true noise source alongside NIST 800-90A compliant CTR-DRBG • Digital Wallet Encryption: BIP32
计算机科学技术硕士2013年7月 - 2015年7月印度统计研究所加尔各答,印度论文:迭代哈希的隐式分析及其变体一流的一流(汇总:78%),最佳分论文奖顾问:Mridul Nandi Nandi Nandi Nandi Nandi
量子信息具有测量本质上是一个破坏性过程的特性。这一特征在互补原理中表现得最为明显,该原理指出互不相容的可观测量不能同时测量。Broadbent 和 Islam (TCC 2020) 最近的研究基于量子力学的这一方面,实现了一种称为认证删除的密码概念。虽然这个了不起的概念使经典验证者能够确信 (私钥) 量子密文已被不受信任的一方删除,但它并没有提供额外的功能层。在这项工作中,我们用完全同态加密 (FHE) 增强了删除证明范式。我们构建了第一个具有认证删除的完全同态加密方案——这是一种交互式协议,它使不受信任的量子服务器能够对加密数据进行计算,并且如果客户端要求,可以同时向客户端证明数据删除。我们的方案具有理想的特性,即删除证书的验证是公开的;这意味着任何人都可以验证删除已经发生。我们的主要技术要素是一个交互式协议,通过该协议,量子证明者可以说服经典验证者,以量子态形式出现的带错误学习 (LWE) 分布中的样本已被删除。作为我们协议的一个应用,我们构建了一个具有认证删除的 Dual-Regev 公钥加密方案,然后将其扩展到相同类型的 (分级) FHE 方案。我们引入了高斯崩溃哈希函数的概念 - Unruh (Eurocrypt 2016) 定义的崩溃哈希函数的一个特例 - 并在假设 Ajtai 哈希函数在存在泄漏的情况下满足某种强高斯崩溃性质的情况下证明了我们方案的安全性。
抗碰撞散列是现代密码学的基本原语,它确保没有有效的方法来找到产生相同哈希值的不同输入。此属性支撑着各种加密应用程序的安全性,因此了解其复杂性至关重要。在经典环境中,这个问题的复杂性是众所周知的,需要 Θ( N 1 / 2 ) 次查询才能找到碰撞。然而,量子计算的出现带来了新的挑战,因为量子对手——具备量子查询的能力——可以更有效地找到碰撞。Brassard、Høyer 和 Tapp [ BHT98 ] 以及 Aaronson 和 Shi [ AS04 ] 确定,全尺寸量子对手需要 Θ( N 1 / 3 ) 次查询才能找到碰撞,这促使需要更长的哈希输出,这会影响安全所需密钥长度的效率。本文探讨了噪声中尺度量子 (NISQ) 时代的量子攻击的影响。在这项工作中,我们研究了三种不同的 NISQ 算法模型,并为所有算法实现了严格的界限: