该模块的总体目标是解决(i)对对手和恶意政党提出的对系统安全的威胁的基本问题,(ii)安全系统的用户所需的服务,以及(iii)应对这些威胁的机制。More specifically, this module covers computer and network security concepts, number theory, block cyphers and the data encryption standard, finite fields, advanced encryption standard, block cypher operation, random bit generation and stream cyphers, public-key cryptography and RSA, cryptographic hash functions, message authentication codes, digital signatures, key management and distribution, user authentication, network access control and cloud security, transport-level security, wireless network安全性,电子邮件安全性和IP安全性。
摘要:区块链技术,加上密码学,已成为各个行业的变革力量,有望提高安全性,透明度和数字交易的效率。本研究论文探讨了区块链技术和密码学的基本原理,它们的相互作用以及它们在不同部门的应用。我们深入研究了基于区块链分散性质,共识算法,加密哈希功能,数字签名和智能合约的机制。此外,我们研究了区块链和密码学的整合所带来的挑战和机遇,并突出了这个动态领域中潜在的未来发展。关键字:区块链,密码学,哈希功能,证明 - 工作,共识,签名,加密。1。简介区块链技术是一种分布式分类帐系统,可安全和篡改的方式记录计算机网络的交易。区块链中的每个块都包含上一个块的加密哈希,创建了确保数据完整性的块链。这种分散的体系结构消除了对中间人的需求,例如银行或清算房屋,并使同行 - 与 - 同行交易。密码学在确保区块链内数据的安全性和完整性中起着至关重要的作用。它提供了加密数据,生成数字签名并验证交易真实性的机制。没有密码学,区块链将容易受到各种攻击的影响,例如双重支出或数据操纵。本研究论文旨在对区块链技术和密码学进行全面分析,探讨其基本原理,应用,挑战和未来的前景。通过检查这两种技术之间的相互作用,我们试图阐明它们对各个行业的影响,并确定创新和改进的机会。区块链技术权力下放的基本原理 - 它是区块链技术的关键特征,它消除了中央权力验证交易的需求。相反,交易由节点的分布式网络验证和记录,从而确保对单个失败点的透明度和弹性。共识机制 - 这些协议可以使区块链网络中的节点在交易的有效性和分类账的状态达成共识。示例包括工作证明(POW),股份证明(POS)和授权的股份证明(DPO),每个证明都有其自身的优势和贸易。不变性 - 它是指在区块链上记录的数据后无法更改或删除数据。通过加密哈希函数和附加性(仅限区块链的性质)来实现此属性,使其具有篡改 - 对审查制度具有抵抗力。
单元– I密码学,替换和仿射密码及其加密分析,完美的安全性,块密码,数据加密标准(DES),差速器和线性加密分析,块密码设计原理,块密码密码操作模式,高级加密标准。公共密钥加密系统的单元– II原理,RSA算法,密钥管理,diffie- Hellman密钥交换,身份验证函数,消息身份验证代码(MAC),哈希功能,哈希功能的安全性和MAC,MAC,Secure Hash算法,HMAC,HMAC。单位– III离散对数,Elgamal隐秘系统,用于离散对数问题的算法,特征系统的安全性,Schnorr签名方案,婴儿继态步骤,中文命令,Elgamal Signature Schemine,Elgamal Signature Scheme,数字签名算法,可证明的安全签名Signature Seignature Shemes。单元– IV椭圆曲线,椭圆形曲线模拟元素,椭圆曲线点压缩的特性,椭圆曲线上的计算点倍数,椭圆曲线数字签名算法,椭圆曲线分离算法,椭圆曲线曲线primatity Primatity验证。单元– V网络安全实践:Kerberos,X.509身份验证服务,公共密钥基础架构。电子邮件安全性(非常好的隐私),IP安全性(体系结构,身份验证标头,封装安全有效负载,结合安全性,关联,密钥管理),Web安全性(安全套接字层和传输层安全性)。教科书:1。W.Sta1lings-加密和网络安全原则和实践,人教育,2000年。(第三版)章节:[1,3、5、9、10(10.1,10.2),II,12(12.2,12.4),13(13.3),14,15,16,17]。2。参考:D.Stinsori,密码学:理论与实践,CRC出版社,2006年。章节:[1,2(2.3),6,7,12]。
定期访问不可预测且抗偏差的随机性对于区块链、投票和安全分布式计算等应用非常重要。分布式随机信标协议通过在多个节点之间分配信任来满足这一需求,其中大多数节点被认为是诚实的。区块链领域的众多应用促成了几种分布式随机信标协议的提出,其中一些已经实现。然而,许多当前的随机信标系统依赖于阈值加密设置或表现出高昂的计算成本,而其他系统则期望网络是部分或有界同步的。为了克服这些限制,我们提出了 HashRand,这是一种计算和通信效率高的异步随机信标协议,它只需要安全哈希和成对安全通道即可生成信标。HashRand 的每个节点摊销通信复杂度为每个信标 O(𝜆𝑛 log (𝑛)) 位。 HashRand 的计算效率归因于单向哈希计算比离散对数指数计算的时间少两个数量级。有趣的是,除了减少开销之外,HashRand 还利用安全哈希函数对抗量子对手,实现了后量子安全性,使其有别于使用离散对数加密的其他随机信标协议。在一个由 𝑛 = 136 个节点组成的地理分布式测试平台中,HashRand 每分钟产生 78 个信标,这至少是 Spurt [IEEE S&P'22] 的 5 倍。我们还通过实施后量子安全异步 SMR 协议展示了 HashRand 的实际效用,该协议在 𝑛 = 16 个节点的 WAN 上的响应率为每秒超过 135k 个事务,延迟为 2.3 秒。
f 20 世纪 70 年代:该行业从专有算法过渡到 NIST 数据加密标准 (DES)。 f 20 世纪 90 年代初:RSA 算法被广泛使用,其 1024 位公钥和几种哈希算法,包括 MD5 和 SHA1。(RSA 通常使用数字位数来描述,例如 RSA-309,与 1024 位密钥相同,因此历史有点令人困惑。) f 20 世纪 90 年代中期:由于 NIST 对下一代高级加密标准 (AES) 的呼吁仍在进行中,因此业界从 DES 过渡到三重 DES(或 3DES)。然而,破解 DES 的可能性非常高(1999 年的 DES III 挑战在不到 24 小时内就确定了密钥)。 f 21 世纪初:1992 年发布的 MD5 被发现易受哈希碰撞的影响。业界已过渡到 NIST 于 1995 年发布的 SHA1。2001 年:AES 发布,但 3DES 的使用已根深蒂固,因此从 3DES 到 AES 的过渡仍在进行中。2002 年:NIST 发布了 SHA2 套件,原因是
摘要:能够运行 Grover 搜索算法的量子计算机可能会削弱对称密钥加密和哈希函数的安全强度,该算法可将暴力攻击的复杂度降低一个平方根。最近,量子方法研究提出使用 Grover 搜索算法结合对称密钥加密和哈希函数的优化量子电路实现来分析潜在的量子攻击。分析对密码的量子攻击(即量子密码分析)并估计所需的量子资源与评估目标加密算法的后量子安全性有关。在本文中,我们重新审视了超轻量级密码 CHAM 分组密码的量子实现,重点是优化其密钥计划中的线性运算。我们通过应用新颖的优化分解技术将 CHAM 的线性方程优化为矩阵。使用改进的 CHAM 量子电路,我们估算了 Grover 密钥搜索的成本,并在进一步降低成本的情况下评估后量子安全强度。
基于组的密码学是量词后加密术中相对较新的家庭。在我演讲的第一个部分中,我谈到了基于组的密码学中主要问题之一,即所谓的半程离散对数问题(SDLP)的第一个专用安全分析。我们提供了SDLP和组动作之间的联系,该上下文已知将应用量子子指数算法。因此,我们能够构建用于求解SDLP的亚指数量子算法,从而对SDLP的复杂性及其与已知计算问题的关系进行分类。在我的演讲的第二部分中,我将使用特殊线性群体来谈论Quantum Hash函数,并与量子后区块链技术暗示。