化学问题,需要对复矩阵进行对角化。例如,量子散射共振的计算可以表述为复特征值问题,其中特征值的实部是共振能量,虚部与共振宽度成正比。在目前的研究中,我们将 QAE 推广到处理复矩阵:首先是复 Hermitian 矩阵,然后是复对称矩阵。然后使用这些推广来计算 O + O 碰撞的一维模型势中的量子散射共振态。这些计算是使用软件(经典)退火器和硬件退火器(D-Wave 2000Q)执行的。复 QAE 的结果也与标准线性代数库(LAPACK)进行了对比。这项工作提出了量子退火器上任何类型的复特征值问题的第一个数值解,也是任何量子设备上量子散射共振的首次处理。
我们提出了一种混合量子经典算法来计算二元组合问题的近似解。我们采用浅深度量子电路来实现一个幺正算子和厄米算子,该算子对加权最大割或伊辛汉密尔顿量进行块编码。测量该算子对变分量子态的期望可得出量子系统的变分能量。通过使用归一化梯度下降优化一组角度,该系统被迫向问题汉密尔顿量的基态演化。实验表明,我们的算法在随机全连通图上的表现优于最先进的量子近似优化算法,并通过产生良好的近似解向 D-Wave 量子退火器发起挑战。源代码和数据文件可在 https://github.com/nkuetemeli/UQMaxCutAndIsing 下公开获取。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 分析序列和级数的性质。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 UNIT-I:矩阵 矩阵:矩阵的类型,对称;Hermitian;斜对称;斜 Hermitian;正交矩阵;酉矩阵;通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法求非奇异矩阵的逆;线性方程组;求解齐次和非齐次方程组。高斯消元法;高斯赛德尔迭代法。第二单元:特征值和特征向量线性变换和正交变换:特征值和特征向量及其性质:矩阵的对角化;凯莱-哈密尔顿定理(无证明);用凯莱-哈密尔顿定理求矩阵的逆和幂;二次型和二次型的性质;用正交变换将二次型简化为标准形式第三单元:数列与级数序列:数列的定义,极限;收敛、发散和振荡数列。级数:收敛、发散和振荡级数;正项级数;比较检验、p 检验、D-Alembert 比率检验;Raabe 检验;柯西积分检验;柯西根检验;对数检验。交错级数:莱布尼茨检验;交替收敛级数:绝对收敛和条件收敛。 UNIT-IV:微积分中值定理:罗尔定理、拉格朗日中值定理及其几何解释和应用、柯西中值定理。泰勒级数。定积分在计算曲线旋转表面面积和体积中的应用(仅限于笛卡尔坐标系)、反常积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-V:多元微积分(偏微分和应用)极限和连续性的定义。偏微分;欧拉定理;全导数;雅可比矩阵;函数依赖性和独立性,使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
奇异价值分解对于工程和科学领域的许多问题至关重要。已经提出了几种量子算法来确定给定基质的奇异值及其相关的奇异向量。尽管这些算法是有希望的,但是在近期量子设备上,所需的量子子例程和资源太昂贵了。在这项工作中,我们提出了一种用于奇异值分解(VQSVD)的变分量子算法。通过利用奇异值的变异原理和ky fan定理,我们设计了一种新型的损失函数,以便可以训练两个量子神经网络(或参数化的量子电路)来学习奇异向量并输出相应的奇异值。更重要的是,我们对随机矩阵进行VQSVD的数值模拟以及其在手写数字的图像压缩中的应用。最后,我们讨论了算法在推荐系统和极地分解中的应用。我们的工作探讨了仅适用于Hermitian数据的量子信息处理的新途径,并揭示了矩阵分解在近期量子设备上的能力。
量子纠缠不仅对于理解厄米多体系统起着至关重要的作用,而且对于非厄米量子系统的研究也具有重要的意义。在本文中,我们利用双正交基中的微扰理论,解析地研究了非厄米自旋梯的纠缠哈密顿量和纠缠能谱。具体来说,我们研究了耦合的非厄米量子自旋链之间的纠缠特性。在强耦合极限(J rung ≫ 1)下,一阶微扰理论表明,纠缠哈密顿量与具有重整化耦合强度的单链哈密顿量非常相似,从而可以定义一个临时温度。我们的研究结果为非厄米系统中的量子纠缠提供了新的见解,并为开发研究非厄米量子多体系统中有限温度特性的新方法奠定了基础。
课程简介:本课程介绍量子力学的基础,特别关注量子系统控制的基本原理。量子力学的实验基础。叠加原理、薛定谔方程、特征值和时间相关问题、波包、相干态;不确定性原理。一维问题:双阱势、隧穿和共振隧穿;WKB 近似。厄米算子和期望值;时间演化和汉密尔顿量、交换规则、微扰理论、转移矩阵和变分方法。晶体、布洛赫定理、超晶格。角动量、自旋、泡利矩阵和泡利方程。光与二能级系统的相干相互作用。电磁场的量化、自发和受激发射;腔 QED 元素;量子比特、纠缠、隐形传态、贝尔不等式。
摘要。我们将通常的理想作用扩展到定向椭圆曲线上,以对定向(极化的)阿贝尔品种的(Hermitian)模块作用。面向的阿贝尔品种自然富含𝑅模型,而我们的模块作用来自富含封闭的对称单体类别的类别的规范功率对象构造。尤其是我们的作用是规范的,并提供了完全露出的对称单体作用。此外,我们给出算法以在实践中计算此操作,从而概括了等级1的常规算法。该动作使我们能够基于普通或定向的椭圆曲线,一方面基于同一框架,基于同一基础的密码学,另一方面是基于基于𝔽2定义的超强椭圆曲线的一个。特别是,从我们的角度来看,超高的椭圆曲线是由等级1模块的作用给出的,而在𝔽𝔽2上定义的曲线(Weil限制)由等级2模块作用给出。因此,等级2模块作用反转至少与超级同学路径问题一样困难。因此,我们建议将隐居模块用作密码对称单体动作框架的化身。这概括了更标准的加密组动作框架,并且仍然允许进行耐克(非交互式键换)。我们行动的主要优点是,大概,Kuperberg的算法不适用。与CSIDH相比,这允许更紧凑的密钥和更好的缩放属性。在实践中,我们提出了密钥交换方案⊗ -Mike(张量模块同基键交换)。爱丽丝和鲍勃从超高的椭圆曲线𝐸0 /𝔽𝔽开始,并在𝔽2上计算同一基础。他们每个人都会发送曲线的𝑗-至关重要的是,与Sidh不同,根本不需要扭转信息。由模块作用给出的它们的共同秘密是一个尺寸4主要是极化的阿贝利亚品种。我们获得了一个非常紧凑的Quantum Nike:仅适用于NIST 1级安全性的64B。
我们从理论和数值两个角度研究了具有周期性踢动驱动势的Floquet非Hermitian系统波包在动量空间中的动力学。我们推导出量子共振条件下随时间演化的波包的精确表达式。利用这一解析表达式,我们可以更深入地研究定向输运、能量扩散和量子扰乱的时间行为。我们发现,通过调节踢动势实部和虚部之间的相对相位,可以有效地操控定向传播、能量扩散和量子扰乱:当相位等于π/ 2时,我们观察到最大的定向电流和能量扩散,而受PT对称性保护的扰乱现象最小;当相位为π时,定向输运和能量扩散都受到抑制,相反,非厄米性可以增强量子扰乱。我们讨论了我们的发现的可能应用。
我们可以通过不同的g实现纠缠阶段过渡吗?在上面的方程式中,H 1和H 2都是Hermitian Hamiltonians。更具体地,在本文中,我们考虑以下相互作用:H 1是一个汉密尔顿人,描述了不同位点与H 2之间的相互作用是每个位点上均定义的Hamiltonian。h 2可以描述现场自由度与外部场的耦合。对于这种非自然动力学,在极限G = 0中,我们期望稳态通常会饱和到具有体积定律缩放的高度纠缠状态,而在极限g→∞中,这将变成纯粹的想象进化,稳态是零纠缠熵的微不足道的乘积。在强烈相互作用的系统中,如果存在有限的g,那么是否存在相变。为了解决上述问题,我们考虑了由Sachdev-Ye-Kitaev(Syk)模型[18,19]构建的一维(1D)非自动动力学,并探索其中可能的相变。
耗散在自然界中普遍存在;例如原子核的放射性衰变和吸收介质中的波传播,耗散是这些系统与不同环境自由度耦合的结果。这些耗散系统可以用有效非厄米汉密尔顿量进行现象学描述,其中引入非厄米项来解释耗散。非厄米性导致复杂的能谱,其虚部量化系统中粒子或能量的损失。非厄米汉密尔顿量的简并性称为异常点 (EP),其中特征值和相关的特征态合并 [1,2]。 EP的存在已在许多经典系统中得到证明[3-11],并应用于激光模式管理[12-14]、增强传感[15-20]和拓扑模式传输[21-24]。