1 型神经纤维瘤病 (NF1) 是一种遗传性疾病,其特征是神经嵴细胞中良性和恶性肿瘤的生长。尽管进行了广泛的研究,但只有一种药物被批准用于治疗丛状神经纤维瘤,而且没有针对其他相关肿瘤的特定药物。最近的研究表明,针对细胞信号通路(Hippo、Janus 激酶/信号转导和转录激活因子以及丝裂原活化蛋白激酶)和微环境(神经细胞、巨噬细胞、肥大细胞和 T 细胞)是潜在的治疗方法。几项临床试验正在研究抑制特定激酶或靶向微环境中信号分子的药物。尽管取得了重大进展,但仍需要更有效的治疗方法。本文回顾了与 NF1 及其相关肿瘤相关的先前策略、正在进行的临床试验和基础研究的最新进展。从科学数据库和文献中收集的数据突出了新疗法的潜力,包括激酶抑制剂、
哺乳动物的心脏再生能力有限,而斑马鱼具有非凡的再生。在斑马鱼心脏再生期间,内皮细胞可促进心肌细胞周期再入和肌肌的修复,但是负责促进损伤微环境有助于再生的机制仍未完全定义。在这里,我们将基质金属蛋白酶MMP14B识别为心脏再生的主管调节剂。我们确定了斑马鱼和小鼠心脏损伤引起的TEAD依赖性MMP14B内皮增强子,我们表明增强子是再生所必需的,这支持了MMP14B上游的河马信号的作用。最后,我们表明,小鼠中的MMP-14功能对于Agrin的积累很重要,Agrin是新生小鼠心脏再生的基本调节剂。这些发现揭示了促进心脏再生的细胞外基质重塑的机制。
哺乳动物的心脏再生能力有限,而斑马鱼具有非凡的再生。在斑马鱼心脏再生期间,内皮细胞可促进心肌细胞周期再入和肌肌的修复,但是负责促进损伤微环境有助于再生的机制仍未完全定义。在这里,我们将基质金属蛋白酶MMP14B识别为心脏再生的主管调节剂。我们确定了斑马鱼和小鼠心脏损伤引起的TEAD依赖性MMP14B内皮增强子,我们表明增强子是再生所必需的,这支持了MMP14B上游的河马信号的作用。最后,我们表明,小鼠中的MMP-14功能对于Agrin的积累很重要,Agrin是新生小鼠心脏再生的基本调节剂。这些发现揭示了促进心脏再生的细胞外基质重塑的机制。
新颖性检测技术是一种概念学习方法,其通过识别概念的正实例而不是区分其正实例和负实例来进行。因此,新颖性检测方法需要很少的负训练实例(如果有的话)。本文介绍了一种特殊的新颖性检测分类方法,该方法使用基于 [Gluck & Myers,1993] 海马模型的冗余压缩和非冗余区分技术,海马是大脑中与学习和记忆密切相关的部分。具体而言,这种方法包括训练自动编码器在输出层重建正输入实例,然后使用该自动编码器识别新颖的实例。训练后可以进行分类,因为预计正实例将被准确重建,而负实例则不能。本文的目的是将实现该技术的系统 HIPPO 与 C4.5 和前馈神经网络分类在几个应用上进行比较。
摘要。为了确定乳腺癌的新靶点和治疗方式,我们在文献中搜索了在临床前乳腺癌相关体内模型中有效的环状 RNA (circRNA)。通过我们的搜索,我们确定了 26 个上调和 6 个下调的 circRNA,它们在乳腺癌相关的临床前体内模型中起着作用。我们讨论了已确定的 circRNA 的重建和抑制,以及在化学耐药性、增殖抑制和转移背景下确定的靶点的药物性和验证。由细胞因子和高迁移率族蛋白抑制剂、核因子 ĸB 和 Hippo 信号传导驱动的途径成为肿瘤生长和转移的重要驱动因素。三叶因子 1 在雌激素受体阳性乳腺癌转移中的作用也值得进一步研究。此外,粘蛋白 19 已成为乳腺癌治疗的一个未开发的靶点。
癌症干细胞(CSC)的理论提出,肿瘤内的不同细胞以及从其肿瘤中衍生的转移源自具有自我更新和分化能力的细胞的单个亚群。这些癌症干细胞对于肿瘤扩张和转移,肿瘤复发和对常规疗法的抗性(例如化学疗法和放射疗法)至关重要。获得这些能力的获取归因于替代途径的激活,例如Wnt,Notch,SHH,PI3K,Hippo或NF-κB途径,这些途径调节了解毒机制;增加代谢率;引起对凋亡,自噬和衰老途径的耐药性;促进药物转运蛋白的过表达;并激活特定的干细胞转录因子。消除CSC是癌症治疗方法中的重要目标,因为它可以减少复发和转移传播,这是肿瘤学患者死亡率的主要原因。在这项工作中,我们讨论了这些信号通路在CSC中的作用以及它们的治疗潜力。
简介肺癌是全球癌症死亡的主要原因,估计每年有超过 100 万人死于癌症 (1, 2)。不幸的是,肺癌的预后仍然不容乐观,5 年生存率约为 15% (3)。针对致癌驱动因素的分子靶向疗法取得了新进展,带来了重大突破,但 KRAS 的激活突变仍然无法用药 (4, 5)。主要通路(如 RAF/MEK/ERK 和 PI3K/AKT/mTOR 网络)受激活的 KRAS 调控,从而促进癌症存活。作为抗击肺癌的重要组成部分,我们需要更好地了解癌症生物学,并增加受益于癌症治疗的人群。Hippo 通路最早是在果蝇的组织生长基础上发现的,它是一种强大的调节器,可控制器官生长、细胞分化和组织稳态 (6)。高度相关的转录调节因子是相关蛋白 (YAP) 和具有 PDZ 结合基序的转录辅激活因子 (TAZ) 是细胞增殖和分化过程中结构和结构特征的基本来源 (7, 8)。近年来,YAP/TAZ 引起了广泛关注,因为它是多种癌症特征的触发因素,并且已证明 YAP/TAZ 活性对于发展、进展和转移至关重要 (9)。最近的研究将癌症中 YAP/TAZ 的复杂性与其他癌症相关因子和通路联系起来,例如 KRAS、APC、LKB1、异常 GPCR 信号和 WNT 信号 (10)。在肺癌中,YAP 的异常表达与对治疗药物的耐药性、癌症进展和转移到远处部位(例如淋巴结和脑)有关 (11, 12)。 Hippo 通路失调主要由细胞核中的 YAP 进行,研究表明,在约 65% 的非小细胞肺癌中,该通路会在细胞核中诱导生长调节通路 (13)。此外,肺癌患者中 YAP 表达升高与预后不良有关 (9, 14)。尽管最近在理解癌症领域的 YAP 方面取得了进展,但 YAP 在细胞或组织中在肺癌肿瘤发生中的作用仍有待探索。维替泊芬是一种用于眼科疾病光动力疗法的光激活化合物,具有
摘要:香叶基香叶基化(GGylation)是信号蛋白的一个脂质修饰过程,目前关于GGylation信号对胃癌细胞增殖和迁移的影响知之甚少。本研究发现,甲羟戊酸通路抑制剂阿托伐他汀和香叶基香叶基转移酶I抑制剂GGTI-298抑制GGylation可抑制胃癌AGS细胞的增殖和迁移。在寻找信号通路作用的过程中,我们观察到转录激活因子、hippo通路下游效应子YAP被GGylation抑制,通过检测其已知靶基因CYR61和CTGF的mRNA水平及其向细胞核的转位来评估。 shRNA敲低YAP对胃癌AGS细胞增殖和迁移的影响与抑制GGylation类似,提示GGylation信号通过激活YAP促进胃癌细胞增殖和迁移,本研究为胃癌治疗提供了一种潜在的新靶向途径。
编码层粘连蛋白A和C(层粘连蛋白A/C)的LMNA基因(核层层的主要成分)会导致包括扩张心肌病(DCM)在内的椎板病,但尚未完全阐明潜在的分子机制。在此,通过利用单细胞RNA测序(RNA-SEQ),使用测序(ATAC-SEQ),蛋白质阵列和电子显微镜分析来实现转疗酶 - 可访问的染色质测定,我们表明,通过转疗法造成型号的结构成熟,不足在核膜上,Q353R -LMNA - 相关DCM的发病机理是基础的。抑制河马途径可挽救TEAD1在LMNA突变体心肌细胞中通过TEAD1挽救心脏发育基因的失调。来自DCM患者具有LMNA突变的患者心脏组织的单细胞RNA-Seq,证实了TEAD1靶基因的表达失调。我们的结果提出了一种用于转录失调作为LMNA相关DCM的潜在治疗方法的信息。