BD Horizon Realblue™780(RB780)染料是BLD染料家族的一部分。这是一个串联荧光色体,在498 nm处具有最大激发(EX MAX),在781 nm处发射最大(EM MAX)。由BD创新驱动,RB780可以在光谱和常规的细胞仪上使用,并被蓝色激光器(488-nm)兴奋,而561 nm黄绿色激光器的激发极少。对于配备蓝色激光器(488 nm)的常规仪器,RB780可以用作PE-CY7的替代方案,我们建议使用以780 nm接近的光滤光片(例如,780/60-nm带通滤波器)。用于配备蓝色激光器(488 nm)的光谱仪器,可以与PE-CY7结合使用。RB780平均比PE-CY7亮,并且在黄绿色探测器中溢出最少。
人工智能 (AI) 是一项变革性技术,相当于人类文明早期的火。它是一种可用于解决复杂问题、做出预测、自动执行任务和提高生产力的工具。但就像火一样,它具有双重性质,既可能带来好结果,也可能带来坏结果。本课程不需要任何技术知识,专为希望领导在现实世界中部署 AI 系统、管理数据科学和设计团队以及建立和投资 AI 公司的人士而设计。本课程的目标是建立对 AI 可以做什么、机器学习如何工作、这些工具成功和失败的地方以及如何应对其道德影响的直觉。我们将探索广泛的商业应用,研究包括 ChatGPT、Midjourney、DeepBlue、Watson、AlphaZero、Twitter 和 TikTok 背后的推荐系统等在内的工具,并讨论在这些工具的帮助下管理人类团队的最佳实践。本课程是一门基于讲座的课程,包括基于案例的讨论、个人作业、期中考试和期末小组项目。最后,您应该成为识别有前景的用例、评估当前的局限性和识别潜在陷阱的专家,以便您能够应用人类和机器思维伙伴关系来发展新业务并颠覆任何领域的大师。
Triad Properties Corporation 和 Icon Commercial 很高兴提供收购前 Adtran 公司总部大楼的机会,该大楼提供 424,511 平方英尺的办公、制造和仓库空间,分布在两栋大楼中,由人行天桥连接,占地 35.79 英亩。该大楼位于美国第二大研究园区卡明斯研究园区。凭借低于重置成本的定价,该物业现在是一个难得的“空白”重新定位或重新出租机会,可能包括世界一流的企业设施、充满活力的技术中心、财富 500 强扩张或具有市场领先设施的高能量办公环境。
通过脑机接口,重建所看到的人脑活动图像连接了人机视觉和计算机视觉。由于个体之间大脑功能存在固有差异,现有文献主要集中于使用每个人各自的脑信号数据为每个人获取单独的模型,而忽略了这些数据之间的共性。在本文中,我们设计了心理测量学,这是一个全方位模型,用于重建从不同受试者获得的功能性磁共振成像 (fMRI) 图像。心理测量学包含一个全方位专家混合 (Omni MoE) 模块,其中所有专家共同努力捕捉受试者间的共性,而与特定受试者参数相关的每个专家则负责处理个体差异。此外,心理测量学还配备了一种检索增强推理策略,称为 Ecphory,旨在通过检索预先存储的特定受试者记忆来增强学习到的 fMRI 表征。这些设计共同使心理测量变得万能而高效,使其能够捕捉受试者之间的共性和个体差异。因此,增强的 fMRI 表征可作为条件信号来指导生成模型重建高质量逼真的图像,从而使心理测量在高级和低级指标方面都成为最先进的技术。
对光高度敏感,因此我们可以在低照度下看东西。 它无法分辨精细的细节,并且容易受到光饱和的影响。 这就是我们从黑暗的房间走到阳光下时会暂时失明的原因:视杆细胞一直处于活跃状态,并被突然的光线饱和。 视锥细胞 视锥细胞是眼睛的第二种受体。 它们对光的敏感度不如视杆细胞,因此可以忍受更多的光线。 视锥细胞有三种,每种对不同波长的光敏感。 这使我们能够看到彩色图像。眼睛有大约 600 万个视锥细胞,主要集中在视网膜中央凹。 中央凹是视网膜的一小部分,图像可在此固定。 盲点 盲点也位于视网膜上。 尽管视网膜主要被光感受器覆盖,但在视神经进入眼睛的地方有一个盲点。 盲点没有视杆细胞或视锥细胞,但我们的视觉系统会对此进行补偿,所以在正常情况下我们无法意识到它。 神经细胞 视网膜还有专门的神经细胞,称为神经节细胞。 有两种类型: X 细胞:这些细胞集中在中央凹,负责早期检测模式。 Y 细胞:这些细胞在视网膜中分布更广泛,负责早期检测运动。 视觉感知 了解眼睛的基本构造有助于解释视觉的物理机制,但视觉感知不止于此。 视觉器官接收到的信息必须经过过滤并传递给处理元素,以便我们识别连贯的场景,消除相对距离歧义并区分颜色。 让我们看看我们如何感知大小和深度、亮度和颜色,它们对于有效的视觉界面的设计都至关重要。
摘要 骑马是一种有效的肌肉疾病治疗方法。本研究的主要目标是开发一种物理治疗模拟器(概念验证),而不是真正的马,尽管采用了脑电图 (EEG) 放大器和惯性运动捕捉系统 (IMCS)。在实验中,专业和非专业骑手在骑马模拟器期间的身体运动和大脑行为受到监控。基于 IMCS,考虑了用于识别两组骑手骨盆区域活动变化的计算分析。EEG 系统用于调查从未使用过马模拟器的经验丰富的骑马者的大脑信号。为此,进行了以下实验,代表身体和大脑行为。结果得出结论,缺乏经验的骑马者在骑模拟器时往往会犯动作错误,这可能会导致外部臀部和背部区域不对称移位。脑电图研究表明,负责智力和注意力的额叶被激活。此外,负责运动和视觉的大脑颞叶和顶叶区域也显著激活。
摘要 光标、头像、虚拟手或工具以及其他渲染的图形对象使用户能够与 PC、游戏机或虚拟现实系统等计算机进行交互。我们从用户的角度在“用户表征”的统一概念下分析这些不同对象的作用。这些表征是虚拟对象,它们人为地延伸了用户的身体,使他们能够通过执行不断映射到其用户表征的运动动作来操纵虚拟环境。在本文中,我们确定了一组与不同用户表征相关的概念,并对用户表征的控制和主观体验背后的多感官和认知因素进行了多学科回顾。这些概念包括视觉外观、多模态反馈、主动感、输入法、近体空间、视觉视角和身体所有权。我们进一步为这些概念提出了研究议程,这可以引导人机交互社区从更广泛的视角了解用户如何通过他们的用户表征进行感知和交互。
中心 #1:统计过程控制 (SPC)...................................................................................................... 1 中心 #2:制造系统.................................................................................................................... 2 中心 #3:制造专业技能............................................................................................................... 3 中心 #4:制造业供应链....................................................................................................... 4 辐条 #1:机电一体化....................................................................................................................... 5 辐条 #2:自动化编程....................................................................................................................... 6 辐条 #3:机器人技术.................................................................................................................... 7 辐条 #4:3D 建模和增材制造.................................................................................................... 8 辐条 #5:机械加工.................................................................................................................... 9 辐条 #6:数字化制造.................................................................................................................... 10 辐条 #7:微电子装配............................................................................................................. 11 辐条 #8:电气装配............................................................................................................. 12
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
Inditex是一家全球时尚,设计,分销和零售公司,旨在为200多个市场的客户提供鼓舞人心,质量和负责任的时尚建议。Inditex Group是几个商业品牌的家族:Zara,Pull&Bear,Massimo Dutti,Bershka,Stradivarius,Oysho和Zara Home。该公司已经实施了以四个支柱为基础的业务模式:一个独特的时尚建议,差异化购物体验,非凡的团队以及在小组活动的每个阶段实施负责任的做法。在这方面,Inditex在尊重和透明度的框架内,与我们的利益相关者的持续对话,基于促进人权,并具有对客户,社会,行业和我们的环境产生积极影响的最终目的。
