中心 #1:统计过程控制 (SPC)...................................................................................................... 1 中心 #2:制造系统.................................................................................................................... 2 中心 #3:制造专业技能............................................................................................................... 3 中心 #4:制造业供应链....................................................................................................... 4 辐条 #1:机电一体化....................................................................................................................... 5 辐条 #2:自动化编程....................................................................................................................... 6 辐条 #3:机器人技术.................................................................................................................... 7 辐条 #4:3D 建模和增材制造.................................................................................................... 8 辐条 #5:机械加工.................................................................................................................... 9 辐条 #6:数字化制造.................................................................................................................... 10 辐条 #7:微电子装配............................................................................................................. 11 辐条 #8:电气装配............................................................................................................. 12
深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
深度神经网络是一种复杂的结构化系统,它以并行、分布式和上下文敏感的方式处理信息,而深度学习则是利用这些系统通过依赖经验的学习过程获得与智能相关的能力的努力。在人工智能领域,深度学习的工作通常旨在利用所有可用的工具和资源来创造和理解智能,而不考虑其生物学合理性。然而,深度学习的许多核心思想都从大脑和人类智能的特征中汲取灵感,我们认为这些受大脑启发的系统最能捕捉这些特征(Rumelhart、McClelland 和 PDP 研究小组,1986 年)。此外,深度学习研究中出现的想法可以帮助我们了解人类和动物的记忆和学习。因此,深度学习研究可以看作是研究人员之间相互交流的沃土,这些研究人员研究的相关问题对生物智能和机器智能都有影响。
摘要:随着人工智能和通信技术的进步,神经科学领域的发展每天都在给我们带来惊喜,我们现在已经更接近自 20 世纪以来一直追求的目标:将大脑机器本身变成一台计算机。因此,从帕金森症到多发性硬化症等多种疾病的治疗将可能成为可能,并且交流的物理界限也可能被消除。脑机接口技术在带来潜在好处的同时,也带来了需要从法律角度探讨的风险。本文通过重新审视随着脑机接口技术的发展而开始成为法律概念的神经数据(脑机接口过程中获得的数据)方面的隐私,提出了在“直接、连续、流畅和不可阻挡”的数据流时代有关脑机接口数据的各种问题。本研究的主要目的是主张从脑机接口技术的发展阶段开始制定尊重人类自主权和隐私的法律框架,该技术将得到新通信技术的支持,其应用领域将不断扩大,旨在为在脑机接口和隐私权交叉领域进行法律研究提供基础资源。
本文定义了一种使用AI来增强人类智能的新方法,以解决最佳目标。我们提出的AI Indigo是通过质量优化进行的,是构成态度的缩写。与人类合作者结合使用时,我们将联合系统Indigovx称为虚拟专家。系统在概念上很简单。我们设想将这种方法应用于游戏或业务策略,人类提供战略环境和AI提供最佳,数据驱动的动作。Indigo通过迭代反馈循环运作,利用人类专家的上下文知识以及AI的数据驱动的见解,以制定和完善策略,以实现明确定义的目标。使用量化的三分学模式,这种杂交使联合团队能够评估策略并完善计划,同时适应实时的挑战和变化。
对光高度敏感,因此我们可以在低照度下看东西。 它无法分辨精细的细节,并且容易受到光饱和的影响。 这就是我们从黑暗的房间走到阳光下时会暂时失明的原因:视杆细胞一直处于活跃状态,并被突然的光线饱和。 视锥细胞 视锥细胞是眼睛的第二种受体。 它们对光的敏感度不如视杆细胞,因此可以忍受更多的光线。 视锥细胞有三种,每种对不同波长的光敏感。 这使我们能够看到彩色图像。眼睛有大约 600 万个视锥细胞,主要集中在视网膜中央凹。 中央凹是视网膜的一小部分,图像可在此固定。 盲点 盲点也位于视网膜上。 尽管视网膜主要被光感受器覆盖,但在视神经进入眼睛的地方有一个盲点。 盲点没有视杆细胞或视锥细胞,但我们的视觉系统会对此进行补偿,所以在正常情况下我们无法意识到它。 神经细胞 视网膜还有专门的神经细胞,称为神经节细胞。 有两种类型: X 细胞:这些细胞集中在中央凹,负责早期检测模式。 Y 细胞:这些细胞在视网膜中分布更广泛,负责早期检测运动。 视觉感知 了解眼睛的基本构造有助于解释视觉的物理机制,但视觉感知不止于此。 视觉器官接收到的信息必须经过过滤并传递给处理元素,以便我们识别连贯的场景,消除相对距离歧义并区分颜色。 让我们看看我们如何感知大小和深度、亮度和颜色,它们对于有效的视觉界面的设计都至关重要。
摘要宫颈癌是一种恶性肿瘤,可以传播(转移)向其他可能导致死亡的器官传播(转移)。根据全球癌症研究负担(Globocan),宫颈癌的主要原因中有95%是人乳头瘤病毒(HPV)。到目前为止疫苗接种是防止HPV感染的一种方法。类型的病毒(例如颗粒(VLP)病毒疫苗)与弱化病毒疫苗的类型不同。没有遗传物质,因此不能具有传染性和复制性,这是与使用活病毒在疫苗生产开发中使用的疫苗类型相比,这是潜在的VLP安全。在这项研究中,它更加专注于评估4个VLP VLP VLP设计模型嵌合HPV 18/45/59,这些模型已修改了LOOP,DE,EF,EF,FG,HI,HI具有免疫信息方法。结果表明,模型3疫苗的设计具有最佳,最安全的评估,包括抗原性(0.5284),物理化学特性(分子量为51.16 kDa,等电(PI)5.71和Grvy 0.358),并且疫苗没有引起过敏的反应和毒性。In addition, Model 3 vaccine candidates show significant immunogenicity, namely an increase in antigens on the 5th day, and began to decline on the 20th day, meaning that the body responds to the vaccine as an antigen marked by an increase in immunoglobulin M (IGM) and immunoglobulin G (IgG) which is 1.4 x 10 6 Count/ml长期。该结果表明,模型3具有用作有效且安全的疫苗的最大潜力。关键字:宫颈癌,人乳头瘤病毒(HPV),诸如粒子>的病毒
我写这本书的首要动机是一句您将在接下来的内容中多次看到的短语。这句话是:“转移性疾病无法治愈”。这句话之所以如此重要,是因为尽管我们在癌症研究方面取得了数十年的巨大进步,但一旦疾病扩散到远处器官,患者的治疗进展就非常有限。正因为如此,我们作为一个社区显然是时候尝试一些新方法了,因为标准化疗虽然在疾病的其他阶段有用,但无法让我们到达最后的顶峰,即转移性癌症的治愈。在我看来,其中一种这样的策略涉及将现代人工智能 (AI) 和机器学习 (ML) 方法应用于从癌症患者和癌症衍生细胞系中积累的大量基因组数据,以制定真正个性化的策略,以对个体患者进行癌症逆向工程。因此,本书的目标是让读者相信这是可能的,至少是一条值得追求的途径。首先我要说的是,我将在本书中强调人工智能对基因组数据的分析如何帮助我们更好地利用癌症靶向疗法。与此同时,其他人也在努力开发类似的方法,利用计算和人工智能方法来改善癌症免疫疗法的使用,因为免疫疗法提供了另一套可用于转移性癌症患者的工具。由于我不是免疫学家,我不会在这里讨论这些方法,因为它们可以在其他出版物中找到。
[B] (12:30-2:00 pm) Panel 1: Leaders from Government, Industry and Innovation Clusters Chair : Mr. SS Mohanty , Formerly Director Technical.SAIL and Former President,IIM 12.30-12.40 pm Ms. Atashi Saha, Dy General Manager,The Indian Institute of Metals Role : MC to announce the Panel 1 discussion topic and invite the Panel Chairman, Moderator and the Panellists on virtual dais 12.40-12.50 pm,英国高级制造研究中心Stuart Dawson先生角色:演讲者1/Panellist,他将描述建立行业学术创新集群的成功,以使Sheffield(英国)及其周围地区的经济发展为增值产品。12.50-1.00pm Mahendran V Reddy先生,新加坡国家添加剂制造创新集群,角色:演讲者2/Panellist,他将描述添加剂制造创新集群在促进较短的领导者驱动产品中的高端产品生产中的作用。1.000-1.10 pm,塔塔汽车公司(Tata Motors) 1.000-1.10 pm girish wagh先生>>角色:演讲者3/Panellist,他将描述塔塔汽车公司(Tata Motors)的当前存在和生态系统,以及印度东部地区的其他关键塔塔集团公司。他将在汽车领域内共享与先进材料有关(例如高级钢,电动电动电池)和一些关键促使人吸引该地区制造公司的新兴机会。1.30-2.00 pm面板1:讨论1.10-1.20 pm Raju Rai先生,副总裁兼运营主管,L&T 角色:演讲者4/Panellist,他将谈论先进的制造技术,这些技术正在推动全球经济及其在工程和基础设施行业中的作用。1.20 - 1.30 pm Harsh H Rajani先生,帝国北极星角色:演讲者5/Panellist/Panellist,他将谈论一个具有成本效益和土地有效的关键金属生产群集(这将使High End Systems有益于High -Endors and Bunder offerrous以及非有效性领域),以驱动高端系统,以培训高级系统,以探讨机会并获得更多机会。
通过脑机接口,重建所看到的人脑活动图像连接了人机视觉和计算机视觉。由于个体之间大脑功能存在固有差异,现有文献主要集中于使用每个人各自的脑信号数据为每个人获取单独的模型,而忽略了这些数据之间的共性。在本文中,我们设计了心理测量学,这是一个全方位模型,用于重建从不同受试者获得的功能性磁共振成像 (fMRI) 图像。心理测量学包含一个全方位专家混合 (Omni MoE) 模块,其中所有专家共同努力捕捉受试者间的共性,而与特定受试者参数相关的每个专家则负责处理个体差异。此外,心理测量学还配备了一种检索增强推理策略,称为 Ecphory,旨在通过检索预先存储的特定受试者记忆来增强学习到的 fMRI 表征。这些设计共同使心理测量变得万能而高效,使其能够捕捉受试者之间的共性和个体差异。因此,增强的 fMRI 表征可作为条件信号来指导生成模型重建高质量逼真的图像,从而使心理测量在高级和低级指标方面都成为最先进的技术。
