引言人工智能 (AI) 的发展已展现出令人瞩目的性能,特别是在图像处理或游戏等明确定义的领域。然而,所部署的技术对于人类用户来说可能是不透明的,这引发了一个问题:人工智能系统如何提供解释 (Neerincx 等人,2018 年;Rosenfeld 和 Richardson,2019 年),并且监管框架对可解释人工智能 (XAI) 的需求日益增长。话虽如此,2017 年,谷歌的研究主管 Peter Norvig 指出,在人类可能不擅长提供“解释”的情况下期望计算机提供“解释”是具有讽刺意味的。可解释人工智能 (XAI) 的大部分工作都严重依赖于以计算机为中心的视角 (Springer,2019 年)。例如,Holzinger 等人 (2020) 假设人类和人工智能系统可以平等地访问“基本事实”。由此可见,可解释性“……突出了机器表示中与决策相关的部分……,即有助于模型在训练中的准确性或特定预测的部分。”与许多 XAI 文献一样,这并没有为人类提供任何角色,只能作为被动接受者。这意味着人工智能系统能够反省自己的过程来生成解释。然后将得到的解释呈现给用户,并描述人工智能系统的流程或它使用过的特征(“决策相关部分”)。这样,解释就只是一个建议(来自人工智能系统)加上与此相关的特征。正如 Miller (2017) 所指出的那样,这种态度的一个问题在于,它是基于设计师对什么是“好的”解释的直觉,而不是基于对人类如何响应和利用解释的合理理解。这并不能说明为什么选择某些特征,也不能说明为什么建议适合用户的关注点。它也没有将解释置于更广泛的组织中;分析师的解释可能与数据收集管理人员或接受分析师简报的经理的解释不同。对于 Holzinger 等人 (2020) 来说,情况的各个方面(定义为基本事实)被组合成一个陈述;也就是说,解释只是这个陈述的一种表达。这意味着从特征到解释存在线性插值。这类似于 Hempel 和 Oppenheim (1948) 的“覆盖定律模型”,该模型关注的是历史学家如何根据先前的原因来解释事件。然而,“基本事实”(由 Holzinger 的过程模型和覆盖定律模型假设)很少得到完全定义(导致在选择相关特征时产生歧义)。这意味着,仅仅陈述情况方面而不说明为什么选择这些方面(而不是其他方面)可能不会产生有用或可用的解释。霍夫曼等人(2018)对与解释相关的文献进行了全面的回顾。从这篇评论来看,解释涉及人类的理解(将人工智能系统的输出置于特定情境中),我们同意,考虑这一点的适当框架是数据框架的理解模型(Klein 等人,2007)。此外,理解(及其与解释的关系)依赖于认识到过程(提供和接收解释)必须是相互的、迭代的和协商的。这个过程依赖于“解释者”和“被解释者”达成一致。换句话说,解释涉及“共同点”(Clark,1991),其中理解上有足够的一致性以使对话继续进行。对话的性质将取决于提供解释的情况和被解释者的目标。例如,被解释者可能是“受训者”,他试图理解解释以学习决策标准,也可能是“分析师”,使用人工智能系统的建议作为政策。
摘要 计算复杂性是计算机科学和数学的一门学科,它根据计算问题的固有难度对其进行分类,即根据算法的性能对其进行分类,并将这些类别相互关联。P 问题是一类可以使用确定性图灵机在多项式时间内解决的计算问题,而 NP 问题的解可以在多项式时间内验证,但我们仍然不知道它们是否也可以在多项式时间内解决。所谓 NP 完全问题的解也将是任何其他此类问题的解。它的人工智能类似物是 AI 完全问题类,对于该类问题仍然没有完整的数学形式化。在本章中,我们将重点分析计算类,以更好地理解 AI 完全问题的可能形式化,并查看是否存在适用于所有 AI 完全问题的通用算法(例如图灵测试)。为了更好地观察现代计算机科学如何尝试解决计算复杂性问题,我们提出了几种涉及优化方法的不同深度学习策略,以表明无法精确解决高阶计算类问题并不意味着使用最先进的机器学习技术无法获得令人满意的解决方案。这些方法与人类解决类似 NP 完全问题的能力的哲学问题和心理学研究进行了比较,以强化我们不需要精确和正确解决 AI 完全问题的方法就可以实现强 AI 的概念的说法。
IEEE 是一个非营利组织,是世界上最大的技术专业组织,致力于推动技术进步,造福人类。© 版权所有 2023 IEEE - 保留所有权利。使用本网站即表示您同意条款和条件。
在编写本手册的过程中,技术需要对过去和现在的程序以及现场经验进行研究。在这些程序中,需要简化假设才能进行分析,需要不完美的模拟,演示测试并不总是足够具体或相关性很好。因此,必须使用工程判断来提供设计、分析和测试所需的保守性,以补偿不确定性。随着该领域的持续研究和开发,预计未来 FAA 将定期更新本手册。这些更新将在联邦航空管理局 (Federal Aviation Administration) 的指示下通过后续活页附录纳入。
人力情报 (HUMINT):全人类、全心全意、无时无刻 Robert David STEELE Vivas 自 20 世纪 70 年代以来,人力情报 (HUMINT) 在美国一直处于停滞状态,因为美国急于用技术取代思考(情报生产者),用党派之争取代言论(情报消费者)。我对人力情报的定义包括反情报 (CI)、安全、分析师和消费者。在过去的几十年里,我们摧毁了秘密的人力情报,同时也忽视了反情报和安全,贬低了开源情报 (OSINT)1(占人力情报可收获基础的 80%2),也忽视了我们的士兵、3 分析师和消费者的教育需求。今天,可以合理地认为,只有美国总统从每年 750 亿美元的美国情报界 (US IC)4 获得决策支持(充其量也只是平庸之作),而内阁官员和国会委员会则一无所获。国防官员从秘密来源和方法中获得的信息“最多”5 为他们需要了解的 4%,对四年期国防评估 (QDR) 或其他整体政府规划几乎没有用处。在本文中,我只关注 HUMINT 作为一项广泛的多学科工作,而不是关注已知的美国 IC 缺陷或全球数据病理和美国 IC 或美国政府 (USG) 尚未解决的信息不对称。HUMINT 被定义为十五个不同的子学科专长
摘要。尽管即使是非常先进的人工系统也无法满足人类成为社会互动适当参与者所需的苛刻条件,但我们认为并非所有人机交互 (HMI) 都可以适当地简化为单纯的工具使用。通过批评标准意向性主体解释的过于苛刻的条件,我们建议采用一种最小方法,将最小主体归因于某些人工系统,从而提出将采取最小联合行动作为社会 HMI 的案例。在分析此类 HMI 时,我们利用了丹尼特的立场认识论,并认为出于多种原因,采取意向性立场或设计立场可能会产生误导,因此我们建议引入一种能够捕捉社会 HMI 的新立场——人工智能立场。
我们正在快速经历一个历史时刻:人们在一台计算机前工作,由一台小型 CRT 控制,专注于仅涉及本地信息的任务。联网计算机变得无处不在,在我们的生活中以及科学、商业和社会互动的基础设施中发挥着越来越重要的作用。为了在新千年推动人机交互的发展,我们需要更好地理解新兴的交互动态,其中焦点任务不再局限于桌面,而是延伸到一个复杂的网络信息世界和计算机介导的交互。我们认为分布式认知理论在理解人与技术之间的交互方面发挥着特殊的作用,因为它的重点一直是整个环境:我们在其中真正做什么以及我们如何协调其中的活动。分布式认知为如何思考设计和支持人机交互提供了彻底的重新定位。作为一种理论,它专门用于理解人与技术之间的交互。在本文中,我们提出分布式认知作为人机交互的新基础,勾勒出一个综合的研究框架,并使用我们早期工作中的选集来提出该框架如何为数字工作材料的设计提供新的机会。
摘要:人们普遍认为人为错误是不可避免的,这导致人们认识到安全干预措施不仅应针对错误管理,还应针对错误预防。在本文中,我们提出了一种培训方法,帮助操作员管理人为错误造成的后果。这种方法包括让操作员有机会在培训期间跨越安全操作的界限,并练习能够检测错误和恢复错误的解决问题的过程。为了确定培训的具体要求,我们提出了一种分析事故/事件的技术,该技术检查操作员过去跨越的界限以及他们遇到的解决问题的困难。然后可以使用这些信息来指定操作员在培训期间应该有机会跨越的界限以及他们应该练习的解决问题的过程。这种方法的初步应用令人鼓舞,并为继续在这一领域开展进一步的工作提供了动力。
随着基于人工智能 (AI) 的产品和服务在各个行业中激增,一个最重要的问题浮出水面:这些系统应该包括人类还是应该自主运行?这个问题是我们现在认为理所当然的许多服务和产品的基础。例如,考虑使用谷歌地图。我们中的许多人现在都认为这种基于人工智能的服务是理所当然的,当它指引我们从一个地方到另一个地方时,我们几乎不用考虑它会带我们去哪里。这个工具背后没有人类向导或主持人;我们甚至不能像在银行那样打电话,要求找人谈谈走错路或被带到了目的地以外的地方。如果出了问题,没有人可以帮助我们,也没有人可以投诉。