摘要。背景:亨廷顿氏病(HD)是一种致命的神经退行性染色体显性疾病,患病率为1:20000,迄今为止尚无有效治疗。候选疗法的可翻译性可以通过大型动物模型中的其他测试来增强,因为大脑解剖学,大小和免疫生理学的相似之处。这些特征可以实现对生物分布,效率和毒性的现实前临床研究。客观和方法:在这里,我们非侵入性地表征了脑白质微观结构,神经化学,神经系统状况和突变的Huntingtin蛋白(MHTT)水平的脑脊髓流动性(CSF)的水平。结果:与HD患者类似,CSF MHTT将HD与正常绵羊区分开。我们的结果表明神经系统状况的下降以及脑白质扩散和光谱指标的变化在老年女性HD绵羊中更为严重。对老年女性高清绵羊的纵向分析表明,在一年中可以检测到下降。与HD人类研究的报道一致,call体的白质改变与HD绵羊步态的下降相关。此外,枕叶白质的改变与临床评分评分的下降相关。此外,老年高清绵羊纹状体中能量代谢的标志物与临床评分评分和眼协调的下降相关。结论:该数据表明OVT73 HD绵羊可以作为HD的大型动物模型,为高清疗法的临床前测试提供了一个平台,并对治疗的有效性进行了非侵入性跟踪。
摘要:神经退行性疾病,例如帕金森氏病,阿尔茨海默氏病和亨特顿病,都以神经元和神经元功能障碍的进行性丧失鉴定和特征,导致认知和运动障碍。最近的研究表明,PTM的重要性,例如磷酸化,乙酰化,甲基化,泛素化,Sumoylation,硝化,硝化,截断,O-Glcnacylation和羟基化和羟基化,在NeuroDegeneration灾难的进展中。PTM可以改变蛋白质的结构和功能,从而影响蛋白质稳定性,定位,相互作用和酶活性。异常的PTM会导致蛋白质错误折叠和聚集,降解和清除,并最终导致神经元功能障碍和死亡。本综述的主要目的是概述与神经变性有关的PTM,其潜在机制,分离PTM的方法以及这些疾病的潜在治疗靶标。本文讨论的PTM包括tau磷酸化,α-突触核蛋白和狩猎蛋白泛素,组蛋白乙酰化和甲基化以及RNA修饰。了解PTM在神经退行性疾病中的作用可能为这些毁灭性疾病提供新的治疗策略。
摘要:亨廷顿氏病(HD)是一种罕见但进行性和毁灭性神经退行性疾病,其特征是非自愿运动,认知能力下降,执行功能障碍以及诸如焦虑和抑郁之类的神经精神疾病。它遵循常染色体显性遗传模式。因此,有一个患有突变的亨廷顿(MHTT)基因的父母的孩子有50%的机会患上这种疾病。由于HTT蛋白参与了许多关键细胞过程,包括神经发生,脑发育,能量代谢,转录调节,突触活性,囊泡传递,细胞信号传导和自噬,其异常聚集物导致许多细胞途径和神经延展的扰动。必需的重金属在低浓度下至关重要。但是,在较高浓度下,它们可以通过破坏神经神经神经神经胶质的通信和/或引起营养不良(肠道菌群中的扰动,GM)来加剧HD,这两种都会导致神经蛋白流经肿瘤和进一步的神经变性。在这里,我们详细讨论了铁,锰和铜与神经胶质 - 神经元通信和通用汽车的相互作用,并指出了这些知识如何为新一代HD中新一代疾病改良疗法的发展铺平道路。
亨廷顿舞蹈症 (HD) 是一种目前无法治愈的致命神经退行性疾病,由亨廷顿 (HTT) 基因外显子 1 内的 CAG 三核苷酸重复扩增引起,从而产生一种突变蛋白,这种突变蛋白形成内含物并选择性破坏纹状体和其他相邻结构中的神经元。来自 CRISPR-Cas9 系统的 RNA 引导的 Cas9 内切酶是一种诱导 DNA 双链断裂的多功能技术,可刺激引入移码诱导突变并永久性地禁用突变基因功能。在这里,我们展示了来自金黄色葡萄球菌的 Cas9 核酸酶,一种小的 Cas9 直系同源物,可以与单个引导 RNA 一起包装到单个腺相关病毒 (AAV) 载体中,可用于在体内递送至纹状体后破坏 R6/2 小鼠 HD 模型中突变 HTT 基因的表达。具体来说,我们发现 CRISPR-Cas9 介导的突变 HTT 基因破坏导致神经元内含物减少 50%,并显著延长寿命和改善某些运动障碍。因此,这些结果说明了 CRISPR-Cas9 技术通过体内基因组编辑治疗亨廷顿氏病和其他由三核苷酸重复扩增引起的常染色体显性神经退行性疾病的潜力。
在该基因中[3,9,10]。在没有HD的个体中,CAG重复的数量通常不超过34。但是,对于那些高清的人,这个数字可以超过40 [9]。CAG重复的数量增加会触发Huntingtin蛋白的产生,从而导致随后的神经元丧失[9]。值得注意的是,神经元丧失在基底神经节中,特别是在尾状核和壳核中,尽管在大脑皮层中也可以观察到它[2]。HD会导致运动,认知和精神疾病[11]该疾病的最具特征性特征是Chorea,这是一种涉及类似舞蹈,非自愿,快速和非疾病型高激动运动的运动障碍[12]。其他运动障碍包括肌肉僵硬(刚度),肌张力障碍(非自愿和长时间肌肉收缩)和运动缓慢(Bradykinesia)[9,13,14]。与该疾病相关的认知和精神疾病包括痴呆,抑郁,人格变化和注意力不足[12]。随着疾病的发展,采用基因检测来确认临床症状,包括运动,认知和行为障碍的混合,引起怀疑[8,13]。虽然唱片是一种常见的初始经验,但随着疾病的发展,肌张力障碍和僵化也表现出来[13,14]。运动功能中的这些运动中断可能会导致吞咽困难(吞咽困难)和过度运动质心等问题[15,16]。除了导致吞咽困难的运动挑战之外,认知问题也会影响吞咽[15]。值得注意的是,抽吸是HD中的主要死亡原因[18]。吞咽困难又可能导致营养不良,脱水和抽吸肺炎[17]。此外,吞咽困难可以促进社会隔离,活动和参与的局限性以及整体生活质量的下降
皮质细胞损失是亨廷顿氏病(HD)的核心特征,从临床运动诊断之前多年开始,在先前阶段之前。但是,尚不清楚遗传形态与皮质细胞损失有何关系。在这里,我们探讨了这种关系的生物学过程和细胞类型,并使用细胞特异性验尸数据验证它们。平均有15年的疾病发作和71个对照的八十个premifest参与者。 使用体积和扩散MRI,我们提取了HD特异性的全脑图,其中较低的灰质体积和较高的灰质平均扩散率相对于对照组,用作皮质细胞损失的代理。 这些地图与来自艾伦人脑图集(AHBA)的基因分类数据相结合,以研究与遗传折叠和皮质细胞损失有关的生物学过程。 皮质细胞损失与发育基因的表达呈正相关(即 较高的表达与更大的萎缩和增加的扩散率相关),并且与已与神经变性有关的突触和代谢基因的表达负相关。 这些发现对于扩散MRI和容积HD特异性脑图是一致的。 作为野生型亨廷汀在神经发育中起着作用,我们探索了整个AHBA野生型亨廷顿(HTT)表达(HTT)表达与发育基因表达之间的关联。 还进行了134个没有神经退行性疾病的人脑中的共表达网络分析。 这些事件导致跨脑细胞类型的年龄相关细胞死亡。八十个premifest参与者。使用体积和扩散MRI,我们提取了HD特异性的全脑图,其中较低的灰质体积和较高的灰质平均扩散率相对于对照组,用作皮质细胞损失的代理。这些地图与来自艾伦人脑图集(AHBA)的基因分类数据相结合,以研究与遗传折叠和皮质细胞损失有关的生物学过程。皮质细胞损失与发育基因的表达呈正相关(即较高的表达与更大的萎缩和增加的扩散率相关),并且与已与神经变性有关的突触和代谢基因的表达负相关。这些发现对于扩散MRI和容积HD特异性脑图是一致的。作为野生型亨廷汀在神经发育中起着作用,我们探索了整个AHBA野生型亨廷顿(HTT)表达(HTT)表达与发育基因表达之间的关联。还进行了134个没有神经退行性疾病的人脑中的共表达网络分析。这些事件导致跨脑细胞类型的年龄相关细胞死亡。htt表达与神经发育中涉及的基因的表达相关,而共表达网络分析还表明,HTT的表达与发育生物学过程有关。表达加权细胞类型富集(EWCE)分析用于探索哪些特定细胞类型与HD皮层细胞损失相关,并使用来自邮政损坏的HD脑的细胞特异性单核RNASEQ(SNRNASEQ)数据验证了这些关联。在星形胶质细胞和内皮细胞中富含皮质细胞损失的发育转录组谱,而神经退行性转录组谱则富含神经元和小胶质细胞。在HD后大脑中相对于使用SNRNASEQ的对照组差异表达的星形胶质细胞特异性基因富集于Devel-Opmental转录组谱,而神经胶质细胞和小胶质细胞特异性基因在神经变性转录组中富集。我们的发现表明,PreHD中的皮质细胞损失可能是由双重病理过程引起的,这是神经发育变化的一种结合,在生命开始时,随后是成年后的神经变性,靶向突触表达和代谢基因表达降低的区域。
本研究的目的是确定单次运动是否足以引起亨廷顿氏病患者的大脑适应,并探索任何急性脑血管反应的时间动态。在这项病例对照研究中,我们对 19 名亨廷顿氏病基因阳性参与者(32-65 岁,13 名男性)和 19 名对照者(29-63 岁,10 名男性)进行了动脉自旋标记 MRI 检查,这些参与者的年龄、性别、体重指数和自我报告的活动水平均匹配,以测量 20 分钟中等强度循环运动后的整体和区域灌注。在基线和运动停止后 15、40 和 60 分钟测量脑灌注。相对于基线,我们发现,在停止运动 40 分钟后,亨廷顿舞蹈症患者的脑灌注增加,而对照组参与者的中央前回(P = 0.016)、额中回(P = 0.046)和海马(P = 0.048)的脑灌注没有变化(亨廷顿舞蹈症患者变化 15 + 32.5%,对照组变化 7.7 + 0.8%)。亨廷顿基因中致病三核苷酸重复扩增的长度可预测中央前回的变化(P = 0.03),运动干预的强度可预测亨廷顿舞蹈症患者的海马灌注变化(P < 0.001)。在这两组中,运动在停止运动 60 分钟后增加海马血流量(P = 0.039)。这些发现证明了急性运动作为调节脑血管系统的临床敏感实验范例的实用性。20 分钟的有氧运动选择性地在亨廷顿氏病患者的海马和皮质中诱发了短暂的脑血管适应,并且可能代表了静息时不明显的潜在神经病理学。
亨廷顿氏病是一种遗传性疾病,其特征是由于纹状体中中刺神经元的变性而导致精神病,认知和运动症状。前阶段先于发作,持续数十年。当前的生物标志物包括使用磁共振成像(MRI)的临床评分和纹状体萎缩。这些标记对前阶段中细微的细胞变化缺乏敏感性。MRI和MR光谱法提供了不同的对比度,用于评估疾病中的代谢,微结构,功能或血管改变。它们已用于患者和小鼠模型。小鼠模型研究退化过程的特定机制可能引起人们的兴趣,可以更好地理解从前驱阶段到有症状阶段的发病机理,并评估治疗功效。小鼠模型可以分为三种不同的构造:表达人类亨廷汀(HTT)外显子1的转基因小鼠,具有表达全长人类HTT的人造染色体的小鼠,以及插入鼠类HTT基因中的CAG膨胀的敲入小鼠模型。几项研究已使用MRI/S来表征这些模型。但是,可用的多种方式和鼠标模型使人们对这种富裕的语料库的理解变得复杂。本综述旨在概述使用MRI/S为每个HD的MRI/S获得的结果,以提供使用HD小鼠模型的神经影像学研究概念的有用资源。本综述还旨在涵盖这一方面,以证明MRI/S对于研究高清的重要性。最后,尽管在将临床前方案转换为临床应用方面遇到困难,但在临床前模型中鉴定出的许多生物标志物已经在患者中进行了评估。
图1 Polyq疾病蛋白的αFOLD结构。 (A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。 (i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。 预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。图1 Polyq疾病蛋白的αFOLD结构。(A) Predicted AlphaFold protein model of full-length ATXN1 (Human; AF-P54253), (B) ATXN2 (Human; AF-Q99700), (C) ATXN3 (Human; AF-P54252), (D) ATXN7 (Human; AF-O15265), (E) CACNA1A (Human; AF-O00555), (F) TBP(人类; AF-P20226),(G)AR(人类; AF-P10275)和(H)ATN1(Human; AF-P54259)。(i)预测氨基酸残基1至413的Alphafold蛋白模型HTT(HTTQ21(1-414)),其中包含21个聚谷氨酰胺。预测的HTTQ21(1-414)AlphaFold模型叠加在灰色(蛋白质数据库ID 6x9O,2.60Å分辨率[99]中显示的Cryo-EM确定的HTT-HAP40蛋白结构[99],其中未在Cryo-Em结构中确定PolyQ区域。HTTQ21(1-414)模型高度对齐冷冻结构。由黑色矩形构建的残基代表野生型Polyq区域。比例尺表示源自AlphaFold预测的PLDDT值,并表示每日置信度度量[97]:PLDDT> 90,高精度; 90> plddt> 70建模良好; 70> PLDDT> 50低置信度; PLDDT <50差精度。ar,雄激素受体; ATN1,Atrophin 1; atxn1,ataxin 1; atxn2,ataxin 2; atxn3,ataxin 3; atxn7,ataxin 7; Cacna1a,钙电源门控通道亚基Alpha1 A(Cav2.1);冷冻电子,冷冻电子显微镜; HTT,亨廷顿; PLDDT,每个保留模型置信度评分; Polyq,聚谷氨酰胺; TBP,TATA结合蛋白。
神经退行性疾病(NDD)是指以脑和脊髓中神经元进行性丧失为特征的一组慢性疾病。由于技术局限性,我们对NDD的最初理解最初限于异常蛋白质聚集的病理表现,例如阿尔茨海默氏病(AD)中的β蛋白,亨廷顿蛋白(HTT),亨廷顿氏病(HTT)蛋白在帕克森氏病中α-synuclein in parkinson's Disean和Neurophent中的huntington蛋白(HTT)蛋白。但是,针对蛋白质水平异常的治疗方法在临床试验中一直面临挫折。到20世纪末,测序技术的革命进步构成了一种新颖的观点来解释NDD进展和基因突变的机制,这被认为是表型变化的驱动因素。此后,对基因水平的NDD进行了几项研究。随着测序方法向第三代技术的进展,许多与NDD相关的突变和单核苷酸多态性(SNP)位点被逐渐鉴定。然而,基因突变不能解释100%的NDD病例和零星病例,即使对于亨廷顿氏病(HD),通常被认为是常染色体显性疾病。因此,近年来,研究重点已从直接基因表达扩展到表达的调节,其中包括转录组学,蛋白质组学和表观基因组学的领域。基因疗法的概念是1972年提出的(Friedmann and Roblin,1972),它是指通过分子均值的基因序列的有针对性变化。从狭义的意义上讲,基因编辑主要是通过诱导基于DNA双链的特定DNA双链(DSB)来实现的,以替换基于Donor的基因序列,以替代Donor refer。 CRISPR/CAS9系统,快速进步的遗传领域具有显着的治疗