(a) 示例 PM 试验方案中的自由文本受试者资格标准。A 组招募患有结直肠癌和任何 KRAS G12 突变(G12C 除外)的患者。B 组招募患有 EGFR 改变(特别是 EGFR 外显子 19 插入或 EGFR 扩增)的除乳腺癌以外的实体瘤的患者。(b) 试验细节已转换为 CTML,其中包含与基本试验元数据(橙色)和治疗组(深蓝色)相关的精选信息,其中包含特定的基因组(青绿色)和临床(浅蓝色)匹配标准。A 组和 B 组排除使用感叹号进行注释。
(a) 示例 PM 试验方案中的自由文本受试者资格标准。A 组招募患有结直肠癌和任何 KRAS G12 突变(G12C 除外)的患者。B 组招募患有 EGFR 改变(特别是 EGFR 外显子 19 插入或 EGFR 扩增)的除乳腺癌以外的实体瘤的患者。(b) 试验细节已转换为 CTML,其中包含与基本试验元数据(橙色)和治疗组(深蓝色)相关的精选信息,其中包含特定的基因组(青绿色)和临床(浅蓝色)匹配标准。A 组和 B 组排除使用感叹号进行注释。
由于这些生物的困难生物学,反向遗传学在人类丝状寄生虫中的应用滞后。最近,我们开发了一种共同培养系统,该系统允许转染Brugia Malayi的感染性幼体阶段并有效地发展为Fecund成年人。这是开发基于Piggybac Transposon的工具包的,该工具包可用于生产具有稳定整合到寄生虫基因组中的转基因序列的寄生虫。然而,PiggyBac系统通常已被基于群的常规间隔短篇小学重复序列(CRISPR)技术取代,这允许精确编辑基因组。在这里,我们报告了适应b。马来语用于CRISPR介导的敲入插入寄生虫基因组。在b的基因间区域中鉴定出合适的CRISPR插入位点。马来语基因组。修改了双重记者Piggybac载体,用插入位点的序列替换了Piggybac倒的末端重复区域。b。用合成引导RNA,修饰的质粒和cas9核酸酶转染马来语或其。将转染的寄生虫植入沙鼠中,并允许发展为成年人。后代微丝菌进行了筛选,并筛选了质粒中编码的分泌的荧光素酶报告器的表达。发现大约3%的微丝虫分泌荧光素酶;所有这些都包含插入寄生虫基因组中预期位置的转基因序列。这些数据表明CRISPR可用于修改B的基因组。使用适配器介导的PCR测定法,检查了转基因微丝菌是否存在关闭目标插入;没有发现脱靶插入。马来语,开辟了精确编辑这种重要人类丝状寄生虫的基因组的道路。
转座元件(TES)是重复的DNA序列,可能能够在整个基因组中移动。除了它们固有的诱变效果外,TE还可以通过捐赠其内在的调节序列(例如促进细胞基因的异位表达)来破坏附近基因。te转录不仅对于TE换位本身是必需的,而且还可以与Te-Gene Fusion转录本相关,在某些情况下也是普遍转录的产物。因此,正确确定了TE副本的转录状态,是为了理解TE在宿主基因组中的影响。识别和量化TE转录的方法主要依赖于简短的RNA-seq读取以在家庭级别估算TE表达,同时使用特定算法来区分副本特定的转录。但是,将简短的读数分配给其正确的基因组位置,基因组特征并不是微不足道的。在这里,我们检索了果蝇的全长cDNA(远程prime,词汇),并使用牛津纳米孔技术进行了对其进行验证。我们表明,可以使用长阅读RNA-Seq来识别和量化复制级别的转录TE。尤其是,使用长读数比简短读数更好地估计了插入过度插入的注释基因。尽管如此,长TE转录本(> 4.5 KB)并未得到很好的捕获。大多数表达的TE插入对应于失去其转置能力的副本,在家庭中,只有几份副本表示。长阅读测序还允许识别约107个TE副本的剪接转录本。总的来说,睾丸和卵巢之间TE的第一个比较在子类和插入水平上发现其转录景观中的差异。
PACBIO测序溶液的出色精度为您提供了细胞和基因治疗开发所需的工具。这种准确性使您能够快速加速新型腺相关病毒(AAV)衣壳的工程和发现,监测和评估杂质并评估病毒整合。跨PACBIO平台的综合变体检测提供了CRISPR-CAS9基因编辑结果的全部表征,包括小和大插入或删除,以及目标构造集成站点。最后,PACBIO测序技术的精度使您可以确认转基因的正确表达和剪接以及细胞和基因治疗开发中使用的细胞系的身份和基因组完整性。
研究成果概要(中文):CRISPR-Cas9 是一种多功能技术,可应用于医疗。在 DNA 双链断裂后的修复途径中,与模板 DNA 同源重组 (HDR) 的修复有助于精确编辑,但同时,涉及碱基缺失或插入的 NHEJ 也以高频率发生。我使用 Traffic Light Reporter 系统进行了基于细胞的 HDR 增强因子筛选,该系统可以同时检测具有 HDR 和 NHEJ 的细胞,并确定了与 NHEJ 衍生细胞相比,HDR 衍生细胞中表达较高的几个基因。对这些基因的进一步基因本体分析表明,它们与 DNA 修复和细胞周期有关。
液体活检中癌组织DNA或CFDNA(无细胞DNA)的当前基因组和表观基因组分析依赖于单独的,时间和样品耗尽的技术来进行体细胞变异检测或甲基化分析。在这里,我们描述了使用Agilent Avida靶向富集溶液进行体细胞和甲基化分析的敏捷Bravo自动化液体处理平台的工作流程和性能。该溶液可以有效地分析低输入肿瘤DNA或CFDNA样品。Avida Duo工作流程可以高度敏感地检测单核苷酸变体(SNV),插入和缺失(Indel),拷贝数变化(CNV),转运(TL)和DNA甲基化谱,而没有任何样品分开。
DNA链的合成仍然是DNA存储系统中最昂贵的一部分。因此,要使DNA存储系统更加实用,必须优化合成过程中使用的时间和材料。我们考虑了最常见的合成过程,其中多个DNA链与一个共同的交替超台式并行合成,一次是一个核苷酸。合成时间或合成周期的数量由这种共同超台式的长度确定。在此模型中,我们设计的第四纪代码可以最大程度地减少可以纠正缺失或插入的合成时间,这是基于数组的合成中最普遍的错误类型。我们还提出了将二进制字符串编码为这些代码的多项式时间算法,并表明速率接近容量。
基因编辑的平台可简化使用细胞系统或动物模型对疾病发病机理,自身免疫性和炎症反应的理解,以研究单基因疾病(由单个遗传缺陷引起的疾病),例如囊性纤维化引起的疾病(如疾病),例如囊性纤维化,血液嗜血杆菌,镰状细胞障碍和癌症[4]。随着患者基因组的测序,与各种疾病相关的大量突变被明确确定和鉴定。基因组编辑操纵特定的基因基因座,以便以插入,缺失或点突变的形式获得基因组修饰,这对于鉴定功能性靶向基因和调节因子必不可少的基因组[5,6]。设计器核酸酶(如二聚体型IIS限制酶(FOKI)和Cas9)通过切割
