K计算机及其后继超级计算机“ Fugaku”是世界一流的超级计算机,它们是由88,192和158,976个相互联系的节点组成的大规模平行计算机。通过富士通开发的互连技术使这种100k节点的可伸缩性成为可能。技术的分区和虚拟圆环功能可以防止多个并行程序之间的通信干扰和支持每个并行程序中通信模式的优化,以确保稳定的通信性能,并允许分区即使在tain tain失败的节点上也可以使用以获得高可用性。本文介绍了K计算机和超级计算机Fugaku中使用的高维度的互连技术。
在Terahertz(THZ)频段的微型光子设备设想,可以为计算和未来无线通信的数据传输能力和集成密度带来显着增强。宽带硅波引物技术已不断成熟,以推动低损坏平台的集成解决方案。然而,在实现弯曲引起的损失和模式失真引起的弯曲程度不同的紧凑型波形平台时面临挑战。在这里,我们演示了用于多层芯片传输的多个弯曲的光子晶体波导平台。我们的硅互连设备表现出优化的弯曲半径与自由空间波长比为0.74,没有信号失真和透射带宽为90 GHz,代表355 GHz时的25.4%分数带宽。宽带波导互连通过通过多个载体发送复杂的调制数据来实现327 Gbps的汇总数据传输速率。这项工作增强了未来子孙后代的THZ光子集成电路的开发,高数据速率互连和无线通信,范围从第六到X代(6G到XG)。
摘要 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和应用处理器)日益增加的复杂性和功能性至关重要。对功能的不断增长的需求转化为更高的信号速度和越来越多的 I/O。为了限制整体封装尺寸,组件的接触焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心通孔和小轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用;但将这些能力的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两类 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了按照 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 mm 间距时,该技术成功通过了所有测试。在 0.8 mm 间距时,在互连应力测试 (IST) 和导电阳极丝 (CAF) 测试中会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。简介通常认为 HDI PCB 有两个主要驱动因素:(1) 关键元件的小间距和高 I/O 数量;(2) 这些元件的性能不断提高,导致电路板上的信号线速度加快。微孔的使用可以缩短信号路径的长度,从而提高信号完整性和电源完整性。由于扇出内的密集布线,关键网络可能会受到串扰。在 1.0 mm 间距元件的引脚之间布线差分对需要精细的线宽和间距。0.8 mm 间距元件的埋孔之间不再可能进行差分对布线。需要在扇出区域内分割线对,分割长度决定了分割对对信号完整性的影响。单端网络宽度的变化以及差分对间距和/或走线宽度的变化将导致阻抗不连续。因此,选择合适的层结构和过孔类型将同时改善布线能力和信号完整性。在定义 HDI PCB 技术参数时,一个重要的考虑因素是元件间距和 I/O 数量不能独立处理。间距为 1.0 mm 的高引脚数元件(> 1000 引脚)可能需要使用微过孔来减少总层数或改善受控阻抗线的屏蔽。另一方面,仅具有两排焊球的 0.5 mm 间距元件的逃逸布线可在不使用微孔和细线宽和间距的情况下进行。增加层数以便能够布线一个或多个高引脚数元件将导致 PCB 厚度增加,这会通过限制通孔纵横比影响最小通孔钻孔直径,从而再次限制布线可能性。为了定义 HDI 技术参数,需要了解过去、现在和未来太空项目中使用的面阵器件 (AAD) 的规格。纵观目前正在开发的复杂太空元件,间距为 1.0 mm 的陶瓷柱栅阵列 (CCGA) 仍将是未来几年的首选封装。例如,新的 Xilinx FPGA (RT-ZU19EG: CCGA1752) [1]、CNES VT65 电信 ASIC (CCGA1752) [2] 和欧洲航天局 (ESA) 的下一代微处理器 (NGMP, CCGA625) [3] 就是这种情况。间距较小的柱状网格阵列 (0.8 毫米) 已在研发中得到展示 [4],尽管尚未发现商业实现。带有非塌陷高铅焊球的陶瓷球栅阵列 (CBGA) 用于军事和航空航天应用 [5]。当间距为 0.8 毫米及以上 (0.5 毫米) 时,陶瓷 (即密封) 封装会成为可靠性风险,因为更小的间距 (0.8 毫米) 会降低封装的可靠性。
1. 背景 电子产品的小型化趋势已经出现一段时间了。有源元件的引脚排列不断增加,使其能够具有附加功能。系统级封装 (SiP) 解决方案的使用趋势也很明显,因此有源和无源元件的布线也变得具有挑战性。为了克服这一挑战,高密度互连 (HDI) 电路板不仅使用通孔,还使用不同类型的微孔,例如盲孔、埋孔、堆叠孔、交错孔。测试电路板和组件可靠性的标准程序非常耗费资源,尤其是时间和金钱,因为测试必须在持续数周的气候室中进行,然后进行额外的破坏性测试,例如横截面。另一方面,IST(互连应力测试)是一种快速测试,可以评估所使用的技术,尤其是所有类型通孔的质量。虽然试样在测试过程中会被破坏,但无需测试制造的电路。这既节省了材料,又节省了时间。本文将介绍技术优化和关键发现。
总结模块化机器人系统的使用在轨道机器人技术中起关键作用。在这里,可以将具有不同有效载荷的不同模块相互结合,例如创建卫星。连接模块,所谓的标准互连(SIS)具有多功能特征,例如允许机械和电气连接以及数据传输,并且在必要时也需要调节热分布。在欧盟Horizon 2020项目Peraspera项目的运营赠款(OG)期间,将在基准测试概念的帮助下评估三个SIS,以对最适合的轨道示范任务提出建议。本演讲将在时期,涉及的SIS和基准测试概念的结构中突出计划的演示场景。关键字:空间机器人,标准互连,轨道示范,
铟凸点阵列在量子计算中的应用越来越广泛,因为其对共面性和键合线厚度控制以及高质量电气互连的要求非常严格,红外焦平面阵列 (IR FPA) 显示出对更高分辨率的持续追求,这意味着更小的凸点、更高的密度和更大的表面积,最后,消费市场对 µLED 或 Micro LED 的需求越来越大,这意味着细间距铟互连需要更高的吞吐量。
摘要 — 高密度互连 (HDI) 印刷电路板 (PCB) 和相关组件对于使太空项目受益于现代集成电路(如现场可编程门阵列、数字信号处理器和应用处理器)日益增加的复杂性和功能性至关重要。对功能性的不断增长的需求意味着更高的信号速度和越来越多的输入/输出 (I/O) 数量。为了限制整体封装尺寸,元件的触点焊盘间距会减小。大量 I/O 与减小的间距相结合对 PCB 提出了额外的要求,需要使用激光钻孔微孔、高纵横比核心过孔以及小的轨道宽度和间距。虽然相关的先进制造工艺已广泛应用于商业、汽车、医疗和军事应用,但将这些性能的进步与太空的可靠性要求相协调仍然是一个挑战。考虑了两种类型的 HDI 技术:两级交错微孔(基本 HDI)和(最多)三级堆叠微孔(复杂 HDI)。本文介绍了根据 ECSS-Q-ST-70-60C 对基本 HDI 技术的鉴定。在 1.0 毫米间距下,该技术成功通过了所有测试。在 0.8 毫米间距下,互连应力测试和导电阳极丝测试期间会遇到故障。这些故障为更新 HDI PCB 的设计规则提供了基础。
摘要在这项研究中,研究了用于chiplets的高密度有机杂交底物异质整合。重点放在与互连层的杂种底物的设计,材料,过程,制造和表征上。进行了非线性有限元分析,以显示填充有互连层导电糊的VIA处的应力状态。关键词chiplets,异源整合,杂交底物,互连层,扇出面板级芯片last I.对2.1D IC积分的简介,具有细金属线宽度(L)和间距(S)的薄膜层(无芯底物)在堆积包装基板的顶层上制造,并成为混合基板[1-5]。在这种情况下,杂交底物的屈服损失,尤其是精细的金属L/S无烷基底物很难控制,并且可能非常大。为2.3D IC积分,精细的金属L/S底物(或插头)和堆积包底物是分别制造的[6-15]。之后,细金属L/S底物和堆积封装基板通过焊接接头互连为混合基板,并通过底漆增强。在这种情况下,杂交底物的屈服损失,尤其是精细的金属L/S无烷基底物更易于控制和较小。在这项研究中,精细的金属L/S底物和堆积封装基板或高密度互连(HDI)也被单独制造,然后通过互连层组合。这与2.3d IC集成非常相似,除了焊接接头和底部填充,被取消,这些焊接被互连层取代。互连层约为60μm,由填充有导电糊的预处理和VIA(底部为100μm直径为100μm,直径为80μm),并且处于β级。精细的金属L/S无烷基基材(37μm厚度)是由PID(可令人刺激的介电),LDI(激光直接成像)和PVD(物理蒸气沉积),Photoresist和LDI,LDI,LDI,
基于液体金属(LM)的可拉伸印刷电路板的高密度互连(HDI)技术对于扩大其适用性至关重要。HDI技术提供了高分辨率的多层电路,具有高密度的组件,这是下一代神经探针以及超声波和传感器阵列所必需的。这项研究提出了一种使用激光雕刻的微凹槽的HDI技术,并在硅酮中使用保护性升力 - 聚乙烯醇(PVA)和随后的显微镜LM粒子喷雾沉积。这种方法实现了高分辨率的LM模式,并同时实现了组件的多层连接性和高密度集成,即实现HDI技术。使用可伸缩的0201 LED显示器证明,密度为每毫米2的六个铅和一个耳蜗植入物(CI)电极阵列。所证明的CI制造有可能以提高精度和吞吐量的植入物的全自动印刷电路板制造。植入豚鼠中的植入物表明,CI能够使用高质量的电气听觉脑干反应(EABR)和电气复合动作电位(ECAP)激活听觉神经元。此外,LM互连的U形横截面比正常矩形横截面具有更高的电路机械冲击力。
摘要 - 半导体行业中紧密耦合,高度整体的电路的要求催生了替代的替代媒介创新,例如2.5-D/3-D集成。这种替代方案的令人难以置信的潜力带有巨大的challenges,其中最重要的是包装互连球的前所未有的减少。市场接受新的细节微电源产品在很大程度上取决于与传统的摩尔般的较高绩效期望相吻合而没有成本罚款的传统组装过程的发展。这样一个过程是将通量应用于互连表面以实现有效连接。不足的通量数量或通量活性会阻碍固体,可靠的关节的形成,而过量或活动可能会导致焊接桥梁或下游操作(例如残留物清洁或底部填料)的困难。这种精致的平衡已经对传统芯片连接而言已经很复杂了,这进一步挑战了俯仰小型化所施加的几何和空间减少,尤其是在大型死亡(超过100,000个互连)的情况下。本文提供了一种总体开发方案,可以将通量浸入操作发展为大型模具(8×11×0.780 mm)的生产级热压缩组件,并具有11,343 Ultrafine Pitch(62μm)铜支柱柱互连。在审查了通量技术的最新技术状态并详细介绍了特定的技术问题后,我们介绍并捍卫所选的助剂应用方法及其相应的感兴趣参数。的物理和化学表征对选定的通量材料候选物的结果与分析有关其性质与通量DIP施加参数的相关性的分析。作为这一基本理解的一部分,我们研究并报告了倒入浸入行为以及与其他工业浸入涂料应用的比较。最后,对生产类型环境中的过程组装实验的结果进行了审查,并讨论了先前的特征。这些实验涵盖了下游组装过程兼容性(即清洁和下填充)以及产品可靠性。