图1.左图:DARPA 对可解释 AI 的概念化,改编自 [ 35 ]。右图:使用高级执行-选择-保留组织模型对 Weick 的感知属性 (1-7) 进行分类,改编自 [49]。执行包括感知和响应环境变化的属性;选择包括解释变化含义的属性;保留包括描述存储和使用先前经验的属性 [ 56 ]。我们的感知 AI 框架扩展了现有的可解释性和可解释性定义,以包括 Weick 的感知属性。
抽象的细胞绘画测定产生的形态学特征是生物系统的多功能描述,并已用于预测体外和体内药物效应。但是,从经典软件(例如Cell -Profiler)提取的细胞绘画特征基于统计计算,通常在生物学上不易解释。在这项研究中,我们提出了一个新的特征空间,我们称之为生物层,该空间通过综合细胞健康测定法的读数来绘制这些细胞涂料的绘制。我们验证了所得的生物形状空间有效地连接到与其生物活性相关的形态学特征,而且对与给定生物活性相关的表型特征和细胞过程有了更深入的了解。生物形状空间揭示了各个化合物的作用机理,包括双作用化合物,例如蛋白质,蛋白质合成和DNA复制的抑制剂。总体而言,生物形态空间提供了一种与生物学相关的方法来解释使用细胞式诸如CellProfiler等软件得出的细胞形态特征,并生成用于实验验证的假设。
摘要:每年发现超过200万例新病例,皮肤癌是全球最普遍的癌症。皮肤癌是孟加拉国第二大流行的癌症,仅次于乳腺癌。为了改善患者的结局,必须早日检测并治疗皮肤癌。在孟加拉国,皮肤科医生和其他可以识别和治愈皮肤癌的医学专业人员的可用性受到限制。因此,直到良好先进之前,才发现许多皮肤癌病例。皮肤癌的图像可以通过深度学习算法成功地分类。这些模型通常缺乏可解释性,这可能使理解它们得出某些结论的原因可能具有挑战性。由于缺乏可解释性,深度学习模型在增强皮肤癌检测和治疗中的应用可能具有挑战性。在本文中,我们提供了一种技术,可改善孟加拉国在孟加拉国中对皮肤癌进行分类的深度学习模型的可解释性。使用我们技术中的显着图和注意力图的混合物可视化对模型判断至关重要的特征。在孟加拉国的皮肤癌照片集中,我们测试了我们的方法。我们的发现表明,我们的方法可以增强皮肤癌分类深度学习模型的可解释性,而不会大大降低其准确性。还表明,使用我们的策略可能会使深度学习模型更容易识别皮肤癌。我们可以通过检查显着性和注意力图来更好地掌握模型判断背后的推理。这对于使用深度学习模型来识别和治疗皮肤癌的医学专业人员可能是有益的。可以通过使用我们的技术使深度学习模型对皮肤癌分类更可解释的技术来改善孟加拉国的皮肤癌检测和治疗。任何用于对皮肤癌进行分类的深度学习模型都可以使用我们的技术来使用,这很容易构建。将来将将患者的年龄和医疗背景添加到照片中,以增强我们的过程。我们还希望使用更大的皮肤癌照片样本来测试我们的方法。通过使深度学习模型易于阅读,建议的策略可以帮助改善孟加拉国皮肤癌的检测和治疗。这可能会导致早期皮肤癌的识别和治疗,这将使患者受益。
通过可解释的AI(XAI)技术增强神经网络中的可解释性。电子。电子。eng。,卷。1,否。1,pp。1-5,2024。版权:从医疗保健诊断到财务建模的各种应用程序中神经网络的快速发展,已大大提高了决策过程的准确性和效率。但是,这些模型通常可以用作黑匣子,几乎没有深入了解它们如何到达特定的预测。这种缺乏解释性为其在信任,问责制和透明度至关重要的关键领域中采用的主要障碍。本研究旨在通过开发一个集成了多种可解释的AI(XAI)技术来增强神经网络的可解释性的新型框架来解决这一问题。所提出的框架结合了特征分析,层相关性传播(LRP)和视觉解释方法,例如梯度加权类激活映射(Grad-CAM)。这些技术共同对神经网络的决策过程提供了全面的看法,使它们对利益相关者更加透明和可以理解。简介和背景1.1。1.2。2。方法论2.1。数据收集我们的实验结果表明,综合的XAI框架不仅可以提高可解释性,而且还保持了高度的准确性,从而弥合了性能和透明度之间的差距。这项研究为在关键应用程序中部署可解释的神经网络提供了基础,确保了AI驱动的决策是可靠且可理解的。关键字:神经网络;可解释的AI;毕业-CAM;解释性;准确性缩写:XAI:可解释的AI; LRP:层次相关性传播; Grad-CAM:梯度加权类激活映射; AI:人工智能; FNNS:前馈神经网络; CNN:卷积神经网络; Shap:Shapley添加说明1。引言人工智能(AI)已成为现代技术进步的基石,神经网络在各种应用中起着关键作用,例如图像识别,自然语言处理和预测分析。尽管取得了成功,但阻碍神经网络更广泛接受的主要挑战之一,尤其是在医疗保健,金融和自治系统等关键领域,它们缺乏解释性。这些模型的黑框性质使得很难理解它们如何处理输入数据并生成输出,从而导致信任和问责制。可解释的AI(XAI)已成为一个关键的研究领域,旨在使AI系统更加透明和可解释。XAI技术努力阐明复杂模型的内部运作,从而允许用户理解,信任和有效地管理AI驱动的决策。本文着重于通过将各种XAI技术整合到一个凝聚力框架中来增强神经网络的可解释性。目标是为利益相关者提供对模型预测的明确和可行的解释,促进信任并使AI系统在高风险环境中的部署。背景这项研究的动机源于AI系统对透明度和问责制的需求不断增长。例如,在医疗保健中,临床医生需要了解AI驱动的诊断建议,以信任和对它们采取行动。同样,在金融中,利益相关者必须理解基于AI的风险评估,以确保公平性和法规合规性。在自主系统(例如自动驾驶汽车)中,了解决策过程对于安全性和可靠性至关重要。解决这些需求时,我们的研究旨在弥合高性能神经网络与可解释性的基本要求之间的差距,从而促进对各种关键应用程序的AI系统的更大接受和信任。神经网络,尤其是深度学习模型,由于能够从大型数据集中学习并捕获复杂的模式,因此在众多应用程序中取得了前所未有的成功。但是,它们的复杂体系结构通常由多个隐藏的层和数百万个参数组成,使它们变得不透明且难以解释。对AI的解释性的需求导致了旨在揭开这些黑盒模型的几种XAI技术的开发[1,2]。
在计算神经科学中,人们对开发机器学习算法的兴趣越来越高,这些算法利用脑成像数据来为个体提供“脑时代”的估计。重要的是,由于不良健康状况,大脑年龄和年龄年龄之间的不一致可以捕获加速老化,因此可以反映出增加对神经系统疾病或认知障碍的脆弱性。然而,由于大多数现有的脑年龄预测算法缺乏透明度和方法上的理由,因此阻碍了大脑年龄对临床决策支持的广泛采用。在本文中,我们利用协方差神经网络(VNN)提出了使用皮质厚度特征为脑年龄预测的解释驱动和解剖学上的解释框架。Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD) and we make two important observations: (i) VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions, (ii) the interpretability offered by VNNs is contingent on their ability to exploit specific eigenvectors of the anatomical协方差矩阵。在一起,这些观察结果促进了对脑时代预测任务的可解释和解剖学上的观点。
Banipur摘要:人工智能(AI)和机器学习(ML)越来越成为医疗保健,金融和自治系统等关键领域决策的核心。但是,它们的复杂性使许多模型不透明,通常称为“黑框”模型,使用户难以理解或信任做出的决定。可解释的AI(XAI)试图通过在模型决策过程中提供透明度来解决这一问题。两种突出的XAI技术,Shap(Shapley添加说明)和石灰(局部可解释的模型解释)被广泛用于解释复杂的模型。本文介绍了摇动和石灰的比较分析,研究了其理论基础,优势,局限性和应用。Shap植根于合作游戏理论,并提供了一致可靠的解释,而Lime则提供了适合实时应用的有效局部解释。本文进一步讨论了应用这些方法的挑战,尤其是围绕可扩展性和实时决策,并突出了潜在的未来研究方向,包括结合了Shap和Lime优势的混合模型。Keywords: Explainable AI (XAI), Machine Learning Interpretability, SHAP (Shapley Additive Explanations), LIME (Local Interpretable Model-agnostic Explanations), Black-box Models, Model Transparency, Feature Attribution, Model-agnostic Explanations, Cooperative Game Theory, Local Explanations, Global Interpretability, Model Explainability, Bias Detection, Trust in AI, Ethical AI, Algorithm透明度,AI问责制,模型评估,混合解释模型,XAI中的计算复杂性。
Fig.1 RICE 原则定义了一个对齐系统应具备的四个关键特性,这四个特性并无特定顺序: (1) 鲁棒性 (Robustness) 指人工智能系统的稳定性需要在各种环境中得到保证; (2) 可解释性 (Interpretability) 指人工 智能系统的操作和决策过程应该清晰易懂; (3) 可控性 (Controllability) 指人工智能系统应该在人类的指导 和控制下运行; (4) 道德性 (Ethicality) 指出人工智能系统应该遵守社会规范和普适价值观。这四个原则指 导人工智能系统与人类意图和价值观的对齐。他们本身并不是最终目标,而是服务于对齐的中间目标。
摘要 本文研究的是有关 GPT 智能的最详尽的文章之一,该研究由微软的工程师进行。虽然他们的工作有很大的价值,但我认为,出于熟悉的哲学原因,他们的方法论“黑箱可解释性”是错误的。但还有更好的方法。有一门令人兴奋的新兴学科“内部可解释性”(特别是机械可解释性),旨在揭示模型的内部激活和权重,以了解它们所代表的内容以及它们实现的算法。黑箱可解释性未能认识到,当涉及到智能和理解时,流程的执行方式很重要。我不能假装有一个完整的故事来提供智能的必要和充分条件,但我确实认为内部可解释性与关于智能需要什么的合理哲学观点完美契合。因此,结论是温和的,但我认为重点在于如何让研究走上正轨。在本文的最后,我将展示如何使用一些哲学概念来进一步完善内部可解释性的方法。
2,Lindenwood University https://orcid.org/0000-0002-0578-6052摘要:深神经网络(DNN)的可解释性和解释性在人工智能(AI)中至关重要,尤其是应用于医疗保健,财务,财务,财务,自然驾驶和自动驾驶和自动驾驶。这项研究的需求源于AI逐渐融合到关键领域,在这些领域中,透明,信任和道德决策至关重要。本文探讨了建筑设计选择对DNN解释性的影响,重点介绍了不同的建筑元素(例如层类型,网络深度,连接模式和注意机制)如何影响模型透明度。从方法论上讲,该研究对案例研究和实验结果进行了全面综述,以分析DNN中的性能与可解释性之间的平衡。它检查了现实世界中的应用程序,以证明医疗保健,金融和自动驾驶等领域的可解释性重要性。该研究还综述了实用工具,例如局部可解释的模型不合源说明(LIME)和Shapley添加说明(SHAP),以评估它们在增强模型透明度方面的有效性。结果强调了解释性有助于更好的决策,问责制和遵守监管标准。例如,在环境监测中使用Shap有助于政策制定者了解空气质量的关键动力,从而导致明智的干预措施。在教育中,石灰通过强调影响学生绩效的因素来帮助教育者个性化学习。研究结果还表明,结合注意机制和混合模型体系结构可以显着提高可解释性,而不会损害性能。关键字:解释性,解释性,深神经网络,AI透明度
存在强化学习之类的应用,例如医学,其中政策需要被人类“解释”。用户研究表明,某些政策类可能比其他政策类更容易解释。但是,进行人类的政策解释性研究是昂贵的。此外,没有明确的解释性定义,即没有明确的指标来解释性,因此主张取决于所选的定义。我们解决了通过人类解释性的经验评估政策的问题。尽管缺乏明确的定义,但研究人员对“模拟性”的概念达成了共识:政策解释性应与人类如何理解所给出的政策行动有关。为了推进可解释的强化学习研究,我们为评估政策解释性做出了新的方法。这种新方法依赖于代理来进行模拟性,我们用来对政策解释性进行大规模的经验评估。我们使用模仿学习来通过将专家神经网络提炼为小程序来计算基线政策。然后,我们表明,使用我们的方法来评估基准解释性会导致与用户研究相似的结论。我们表明,提高可解释性并不一定会降低表现,有时会增加它们。我们还表明,没有政策类别可以更好地跨越各个任务的可解释性和绩效进行交易,这使得研究人员有必要拥有比较政策可解释性的方法。