摘要 本文研究的是有关 GPT 智能的最详尽的文章之一,该研究由微软的工程师进行。虽然他们的工作有很大的价值,但我认为,出于熟悉的哲学原因,他们的方法论“黑箱可解释性”是错误的。但还有更好的方法。有一门令人兴奋的新兴学科“内部可解释性”(特别是机械可解释性),旨在揭示模型的内部激活和权重,以了解它们所代表的内容以及它们实现的算法。黑箱可解释性未能认识到,当涉及到智能和理解时,流程的执行方式很重要。我不能假装有一个完整的故事来提供智能的必要和充分条件,但我确实认为内部可解释性与关于智能需要什么的合理哲学观点完美契合。因此,结论是温和的,但我认为重点在于如何让研究走上正轨。在本文的最后,我将展示如何使用一些哲学概念来进一步完善内部可解释性的方法。