Banipur摘要:人工智能(AI)和机器学习(ML)越来越成为医疗保健,金融和自治系统等关键领域决策的核心。但是,它们的复杂性使许多模型不透明,通常称为“黑框”模型,使用户难以理解或信任做出的决定。可解释的AI(XAI)试图通过在模型决策过程中提供透明度来解决这一问题。两种突出的XAI技术,Shap(Shapley添加说明)和石灰(局部可解释的模型解释)被广泛用于解释复杂的模型。本文介绍了摇动和石灰的比较分析,研究了其理论基础,优势,局限性和应用。Shap植根于合作游戏理论,并提供了一致可靠的解释,而Lime则提供了适合实时应用的有效局部解释。本文进一步讨论了应用这些方法的挑战,尤其是围绕可扩展性和实时决策,并突出了潜在的未来研究方向,包括结合了Shap和Lime优势的混合模型。Keywords: Explainable AI (XAI), Machine Learning Interpretability, SHAP (Shapley Additive Explanations), LIME (Local Interpretable Model-agnostic Explanations), Black-box Models, Model Transparency, Feature Attribution, Model-agnostic Explanations, Cooperative Game Theory, Local Explanations, Global Interpretability, Model Explainability, Bias Detection, Trust in AI, Ethical AI, Algorithm透明度,AI问责制,模型评估,混合解释模型,XAI中的计算复杂性。
主要关键词