CRISPR 原核防御系统 (Barrangou et al , 2007; Jinek et al , 2012) 的发现及其转化为有效且高效的基因组工程机制 (Cong et al , 2013; Mali et al , 2013; Ran et al , 2013) 的发现彻底改变了功能基因组学。CRISPR 技术依赖于将 RNA 引导的核酸内切酶靶向基因组内的特定序列位置。该系统已用于各种基因组修饰策略,包括基因敲除(通过错误修复断裂)和定点诱变(通过提高同源性定向修复的效率,在靠近断裂的基因组区域整合 DNA 模板)。在大多数应用中,将核酸酶准确靶向基因组位点比酶活性的特定核苷酸位置优先。虽然核酸酶工程化推动了该系统可支持的技术多样化(Pickar-Oliver & Gersbach,2019),但控制核酸酶靶向的分子规则保持不变;基因组地址编码在向导 RNA 序列 (gRNA) 中,该序列定义为位于原间隔区相邻基序 (PAM) 之前的 20 个核苷酸的基因组 DNA 片段。有大量的生物信息学工具可用
终末期器官衰竭或急性创伤性损伤与相当高的发病率和死亡率相关。对于许多此类绝症或毁灭性疾病,唯一的治愈疗法是实体器官移植 ( Garry 等人, 2005 年; Virani 等人, 2021 年 )。由于器官捐赠者数量有限,这种治愈性疗法仅适用于需要这些疗法的一小部分患者。例如,据估计,每年有 20 万至 30 万美国成年人可从原位心脏移植中受益,但只有大约 3000 名成年人接受了心脏移植 ( Virani 等人, 2021 年 )。这种差异推动了人们寻求替代疗法。除了心脏病等终末期器官疾病外,还有威胁四肢并最终导致肌肉体积损失的创伤性损伤 ( Corona 等人, 2015 年; Greising 等人, 2016 年 )。目前,治疗肌肉体积损失的治疗方法有限,因此导致大量发病率、截肢、终身残疾和生命损失(Greising 等人,2017 年)。这些慢性疾病和创伤需要新的治疗方法。基因编辑(Doudna 和 Charpentier,2014 年;Jinek 等人,2012 年;Cong 等人,2013 年)和体细胞核移植 (SCNT) 技术等技术进步
1) Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, JA 和 Charpentier, E. (2012): 适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。Science, 337, 816– 821。2) Kim, S., Kim, D., Cho, SW, Kim, J. 和 Kim, JS (2014): 通过递送纯化的 Cas9 核糖核蛋白在人类细胞中进行高效 RNA 引导基因组编辑。Genome Res., 24, 1012–1019。 3) Quadros, RM、Miura, H.、Harms, DW、Akatsuka, H.、Sato, T.、Aida, T.、Redder, R.、Richardson, GP、Inagaki, Y.、Sakai, D.、Buckley, SM、Seshacharyulu, P.、Batra, SK、Behlke, MA、Zeiner, SA、Jacobi, AM、Izu, Y.、Thoreson, WB、Urness, LD、Mansour, SL、Ohtsuka, M. 和 Gurumurthy, CB (2017): Easi-CRISPR:一种使用长 ssDNA 供体和 CRISPR 核糖核蛋白一步生成携带条件和插入等位基因小鼠的稳健方法。Genome Biol.,18,1-15。 4) Chen, S.、Lee, B.、Lee, AYF、Modzelewski, AJ 和 He, L. (2016): 高效小鼠基因组编辑
1) Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, JA 和 Charpentier, E. (2012): 适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。Science, 337, 816- 821。2) Kim, S., Kim, D., Cho, SW, Kim, J. 和 Kim, JS (2014): 通过递送纯化的 Cas9 核糖核蛋白在人类细胞中进行高效 RNA 引导基因组编辑。 Genome Res.,24,1012 — 1019。3) Quadros, RM、Miura, H.、Harms, DW、Akatsuka, H.、Sato, T.、Aida, T.、Redder, R.、Richardson, GP、Inagaki, Y.、Sakai, D.、Buckley, SM、Seshacharyulu, P.、Batra, SK、Behlke, MA、Zeiner, SA、Jacobi, AM、lzu, Y.、Thoreson, WB、Urness, LD、Mansour, SL、Ohtsuka, M. 和 Gurumurthy, CB (2017):Easi-CRISPR:一种使用长 ssDNA 供体和 CRISPR 核糖核蛋白一步生成携带条件和插入等位基因的小鼠的稳健方法。 Genome Biol., 18, 1 — 15。4) Chen, S.、Lee, B.、Lee, AYF、Modzelewski, AJ 和 He, L. (2016): 高效小鼠基因组编辑
基因组编辑对于医学和研究目的都具有重要价值。未来的医学应用包括纠正与疾病相关的突变、破坏致病基因,甚至引入新基因(例如,使免疫系统对肿瘤细胞敏感)。研究应用范围从在细胞系或生物体中创建敲除/敲除,和/或引入突变,以研究特定蛋白质、通路或过程的作用,到创建人源化疾病模型。鉴于实际应用的诱人范围,人们在开发基因组编辑方法方面付出了相当大的努力也就不足为奇了。引入基因组变化的传统方式是使用自发重组,要么引入 DNA 突变,要么插入允许进一步使用重组酶(如 Cre)切除基因的序列 [参见 Sauer (2002) 的评论]。随后,锌指核酸酶 (ZFN) 和转录激活因子样效应物核酸酶 (TALEN) 的发现,使得该领域取得了长足的进步,因为它们可以在所需的基因组位置而不是随机的位置引入 DNA 断裂 [参见 Gaj 等人 (2013) 的综述]。尽管如此,基因组编辑领域最大的进步是最近发现的成簇的规律间隔回文重复 (CRISPR) 相关 (Cas) 系统 (Ishino 等人,1987 年;Jansen 等人,2002 年;Jinek 等人,2012 年;Cong 等人,2013 年;Mali 等人,2013 年)。
基因组编辑对于医学和研究目的都具有重要价值。未来的医学应用包括纠正与疾病相关的突变、破坏致病基因,甚至引入新基因(例如,使免疫系统对肿瘤细胞敏感)。研究应用范围从在细胞系或生物体中创建敲除/敲除,和/或引入突变,以研究特定蛋白质、通路或过程的作用,到创建人源化疾病模型。鉴于实际应用的诱人范围,人们在开发基因组编辑方法方面付出了相当大的努力也就不足为奇了。引入基因组变化的传统方式是使用自发重组,要么引入 DNA 突变,要么插入允许进一步使用重组酶(如 Cre)切除基因的序列 [参见 Sauer (2002) 的评论]。随后,锌指核酸酶 (ZFN) 和转录激活因子样效应物核酸酶 (TALEN) 的发现,使得该领域取得了长足的进步,因为它们可以在所需的基因组位置而不是随机的位置引入 DNA 断裂 [参见 Gaj 等人 (2013) 的综述]。尽管如此,基因组编辑领域最大的进步是最近发现的成簇的规律间隔回文重复 (CRISPR) 相关 (Cas) 系统 (Ishino 等人,1987 年;Jansen 等人,2002 年;Jinek 等人,2012 年;Cong 等人,2013 年;Mali 等人,2013 年)。
十年前,人们证明了利用 CRISPR/Cas9 在真核生物中进行基因组编辑 (Cho 等人 2013 年,Cong 等人 2013 年,Feng 等人 2013 年,Jinek 等人 2013 年,Mali 等人 2013 年),现在该技术已经深入科学界,正在进行大量研究 (Wang 和 Doudna 2023)。在植物科学领域,基因组编辑技术不仅用于植物病理生理学研究,还用于实际育种 (Nerkar 等人 2022),一些基因组编辑作物已经商业化并被人类消费 (Waltz 2022)。因此,基因组编辑不再是一项仅由研究人员处理的实验性和不常见的技术,而是一项已进入公众实施阶段的技术。相比之下,这种包括自由改写基因组序列的细微差别的基因组编辑技术真正可以毫不费力地做到的是破坏基因。事实上,大多数使用基因组编辑的研究成果(Matres 等人,2021 年)和正在开发的基因组编辑作物(Nagamine 和 Ezura,2022 年,Xu 等人,2020 年)都是基因破坏的结果。由于可以通过专门破坏对品种特征有不利影响的基因来开发有用的品种,因此基因组编辑技术是一项革命性的技术,可以高效、快速地实现这一目标。另一方面,全基因组关联研究(GWAS)表明,决定数量性状或与遗传变异相关的大多数遗传变异都与基因破坏有关。
靶向核酸酶等高精度基因组编辑工具的发展加速了人类基础医学、动物科学、动物育种以及疾病诊断等领域的进步(Doudna and Charpentier,2014;Kurtz 等,2021;Rieblinger 等,2021;Xie 等,2021)。尤其是被称为 CRISPR 技术的基因组编辑系统自首次报道以来发展迅速(Jinek 等,2012),成为最热门的技术之一。CRISPR/Cas9 技术可精准识别靶序列并实现高效的 DNA 切割,从而完成全基因组范围的基因敲除/敲入(Cong 等,2013;Koike-Yusa 等,2014)。但由于编辑过程中会发生双链断裂(DSB),该技术往往会引入大量不理想的InDel(插入和缺失)突变(Zhao et al.,2019)。随后,人们开发了碱基编辑器(BE),可以利用胞嘧啶脱氨酶或腺苷脱氨酶实现单核苷酸的精准编辑,而不会诱导DSB(Gaudelli et al.,2017;Rees and Liu,2018)。近来,引物编辑器(PE)进一步扩展了基于CRISPR的编辑工具包,可实现所有12种可能的碱基转换和短DNA片段的插入和缺失。该技术融合逆转录酶和Cas9蛋白,以引物编辑向导RNA(pegRNA)为修复模板,实现精准的基因编辑(Anzalone et al.,2019)。在这篇小型评论中,我们总结并讨论了 CRISPR 技术在猪中的最新应用。
十年前,人们证明了利用 CRISPR/Cas9 在真核生物中进行基因组编辑 (Cho 等人 2013 年,Cong 等人 2013 年,Feng 等人 2013 年,Jinek 等人 2013 年,Mali 等人 2013 年),现在该技术已经深入科学界,正在进行大量研究 (Wang 和 Doudna 2023 年)。在植物科学领域,基因组编辑技术不仅用于植物病理生理学研究,还用于实际育种 (Nerkar 等人 2022 年),一些基因组编辑作物已经商业化并被人类消费 (Waltz 2022 年)。因此,基因组编辑不再是一项仅由研究人员处理的实验性和不常见的技术,而是一项已进入公众实施阶段的技术。相比之下,这种包括自由改写基因组序列的细微差别的基因组编辑技术真正可以毫不费力地做到的是破坏基因。事实上,大多数使用基因组编辑的研究成果(Matres 等人,2021 年)和正在开发的基因组编辑作物(Nagamine 和 Ezura,2022 年,Xu 等人,2020 年)都是基因破坏的结果。由于可以通过专门破坏对品种特征有不利影响的基因来开发有用的品种,因此基因组编辑技术是一项革命性的技术,可以高效、快速地实现这一目标。另一方面,全基因组关联研究(GWAS)表明,决定数量性状或与遗传变异相关的大多数遗传变异都与基因破坏有关。
CRISPR/CAS9作为可编程基因组编辑工具的广泛使用受到了脱靶DNA裂解的阻碍(Cong等,2013; Doudna,2020; Fu等,2013; Jinek et al。,2013)。虽然对此类脱离目标编辑事件的分析使CAS9变体的发展具有更大的歧视(Chen等,2017; Kleinstiver等,2016; Slaymaker等,2016),Cas9拒绝或接受Mismismatches的基本分子机制是贫穷的20; Slaymaker和Gaudelli,2021)。在这里,我们使用动力学分析来指导在不匹配监视的不同阶段的CAS9的低温EM结构测定。我们观察到在引导RNA(GRNA)和DNA靶链(TS)之间形成的双链体的独特,未描述的线性构象(TS),该(TS)发生在存在PAM-DISTAL不匹配的情况下,从而阻止Cas9激活。典型的扭结GRNA:TS双链体是CAS9激活的先决条件,充当结构支架,可促进Cas9构象型裂解所需的构象重排。我们观察到,高度耐受性的远端不匹配通过通过RUVC结构域中的柔性环稳定而稳定扭曲的双工构象来实现这种扭结的构象。我们的结果提供了对基本结构机制的分子见解,这些结构机制可能有助于通过CAS9进行离靶机制,并提供了一个分子蓝图,用于设计下一代高富达Cas9变体,可选择性地减少脱离目标DNA裂解,同时又有有效的触发型DNA,同时保留了有效的触发型DNA。