蛋白激酶在细胞存活、增殖和运动中起着关键作用。因此,它们的失调是许多实体肿瘤(包括甲状腺癌)发病机制的共同特征。抑制活化的蛋白激酶彻底改变了甲状腺癌的治疗,为治疗对放射性碘治疗或细胞毒性化疗有抵抗力的肿瘤提供了一种有希望的策略。然而,尽管早期反应令人满意,但这些药物并不能治愈疾病,大多数患者不可避免地会因耐药性而病情恶化。本综述总结了有关甲状腺癌细胞为绕过蛋白激酶抑制而发展的各种机制的最新知识,并概述了正在探索的克服耐药性的策略。了解癌细胞如何对药物作出反应并确定新的治疗分子靶点仍然是治疗这些患者的一大挑战。
摘要 - 成人海马的亚晶体区(SGZ)中的神经发生,可以通过多种手段来刺激,包括通过将实验动物暴露于丰富的环境中,从而提供额外的鼻子,社交和运动刺激。在丰富的动物中产生的有形健康和认知益处,包括改善对精神病,神经学和神经退行性疾病的建模,这可能会影响人类,这可能部分是由于神经元的产生增强所致。神经元反应富集的关键因素是释放脑衍生的神经营养因子(BDNF)和有丝分裂原活化蛋白激酶(MAPK)级联反应的激活,这可能导致刺激Neuroogenese或Neuroogenese的刺激。有丝分裂原和应激激活的蛋白激酶1(MSK1)是BDNF和MAPK下游的一种核酶,可调节转录。MSK1先前已经与缺乏MSK1蛋白的小鼠的研究有关基础和刺激的神经发生。在本研究中,使用仅缺乏MSK1激酶活性的小鼠,我们表明SGZ(KI-67染色)的细胞增殖速率没有由MSK1激酶DEAD(KD)突变造成的,并且与控制后水平的水平没有分歧。然而,与野生型小鼠相比,在标准housed和富集的MSK1 KD小鼠中,双铁蛋白(DCX)阳性细胞的数量都更大。2020年作者。由Elsevier Ltd代表IBRO出版。这是CC BY-NC-ND许可证(http://crea-tivecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。这些观察结果表明,尽管MSK1不影响神经元前体的增殖基础速率,但MSK1负责调节注定成为神经元的细胞数量,可能是对新神经元数量的稳态控制,而新神经元的数量则是整合到齿状gyrus中的新神经元的数量。
尽管有有效的新疗法,但适应性耐药性仍然是 AML 治疗的主要障碍。自噬诱导是适应性耐药性的关键机制。与正常造血细胞相比,诊断时患有白血病的母细胞表达更高水平的顶端自噬激酶 ULK1。化疗和靶向药物可上调 ULK1,因此我们假设开发 ULK1 抑制剂可能为自噬抑制的临床转化提供独特的机会。因此,我们证明,通过遗传和药理学手段抑制 ULK1 可抑制治疗诱导的自噬,克服适应性耐药性,并与化疗和新兴的抗白血病药物如维奈克拉 (ABT-199) 产生协同作用。该研究的下一步目标是探索潜在机制。从机制上讲,ULK1 抑制会下调 MCL1 抗凋亡基因,损害线粒体功能并下调 CD44-xCT 系统的成分,导致活性氧 (ROS) 缓解受损、DNA 损伤和细胞凋亡。为了进一步验证,我们生成了几种 AML 小鼠模型。在这些小鼠模型中,ULK1 缺乏会损害白血病细胞归巢和植入,延迟疾病进展并提高生存率。因此,在研究中,我们验证了我们的假设,并确定 ULK1 是适应性抗治疗的重要介质,也是 AML 联合治疗的理想候选药物。因此,我们
摘要:目前针对人类表皮生长因子受体 (HER) 家族的疗法,包括单克隆抗体 (mAb) 和酪氨酸激酶抑制剂 (TKI),受到耐药性和全身毒性的限制。抗体-药物偶联物 (ADC) 是发展最快的抗癌疗法之一,目前 FDA 已批准 13 种。重要的是,ADC 代表了一种有前途的治疗选择,它有可能克服传统的 HER 靶向治疗耐药性,它能将强效细胞毒素特异性地递送到 HER 过表达的癌细胞,并发挥 mAb 和有效载荷介导的抗肿瘤功效。HER2 靶向 ADC 的巨大成功体现了 HER 靶向 ADC 的临床实用性,包括曲妥珠单抗 emtansine 和曲妥珠单抗 deruxtecan。尽管如此,改进现有 HER2 靶向 ADC 的策略以及针对其他 HER 家族成员(尤其是 EGFR 和 HER3)的 ADC 的开发仍然备受关注。迄今为止,尚未报道过 HER4 靶向 ADC。在本综述中,我们详细介绍了临床阶段的 EGFR、HER2 和 HER3 靶向单特异性 ADC 以及针对该受体家族的新型临床和临床前双特异性 ADC (bsADC)。最后,我们讨论了 HER 靶向 ADC 开发的新趋势,包括新型 ADC 有效载荷和 HER 配体靶向 ADC。
利益冲突声明 LAB 获得阿斯利康和安进的研究支持,并担任默克夏普和多姆公司、Arrowhead Pharmaceuticals、Chugai Pharma、阿斯利康、Genetech Inc.、Abbvie、BeiGene、Jazz Pharmaceuticals 的咨询/顾问。CMG 是阿斯利康、百时美施贵宝、Jazz Pharmaceuticals 和 MonteRosa 的顾问委员会成员,也是阿斯利康、百时美施贵宝和 Jazz Pharmaceuticals 的演讲局成员。CMG 还获得了阿斯利康的研究支持。CMD 获得了安进和阿斯利康的差旅补助,以及罗氏、默沙东和默克的个人演讲费。在生成本稿件的数据时,UP、CA、JS、JEPJT、GF 和 JU 是阿斯利康的员工和股东。所有其他作者声明没有竞争利益。
3。LindströmK,Lindblad F,Hjerna。早产和注意力缺陷/多动障碍。儿科。2011; 127:858-865。4。ertürkE,işıkü,sirin fb。ADHD中血清VEGF,IGF-1和HIF-1α水平的分析。 J Atten Disord。 2023; 28:58-65。 5。 Swanson JM,Kinsbourne M,Nigg JT等。 注意缺陷/多动症脑成像,分子遗传和环境因素以及多巴胺假说的病因学亚型。 Neuropsychol Rev. 2007; 17:39-59。 6。 Halperin JM,BédardAV,Curchack-Lichtin J. ADHD的预防性干预措施神经发育的观点。 神经疗法。 2012; 9:531-541。 7。 Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。 自闭症和注意力缺陷/多动症障碍中生长因子的改变。 前部精神病学。 2017; 8:126。 8。 Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用ADHD中血清VEGF,IGF-1和HIF-1α水平的分析。J Atten Disord。2023; 28:58-65。5。Swanson JM,Kinsbourne M,Nigg JT等。病因学亚型。Neuropsychol Rev.2007; 17:39-59。 6。 Halperin JM,BédardAV,Curchack-Lichtin J. ADHD的预防性干预措施神经发育的观点。 神经疗法。 2012; 9:531-541。 7。 Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。 自闭症和注意力缺陷/多动症障碍中生长因子的改变。 前部精神病学。 2017; 8:126。 8。 Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用2007; 17:39-59。6。Halperin JM,BédardAV,Curchack-Lichtin J.ADHD的预防性干预措施神经发育的观点。神经疗法。2012; 9:531-541。7。Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。自闭症和注意力缺陷/多动症障碍中生长因子的改变。前部精神病学。2017; 8:126。8。Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。Pharmacol Biochem行为。2011; 99:211-216。9。Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用JAMA。2004; 292:619。10。Huang X,Wang M,Zhang Q等。 谷氨酸的作用Huang X,Wang M,Zhang Q等。谷氨酸的作用
Alperönder1,GülceDavutlar 2,Mehmet Ay 1,FerahCömertInder3 *抽象的鞘氨醇激酶(SPHKS)作为脂质激酶,催化鞘氨醇(SPH)(SPH)促成鞘氨酸1-磷酸盐(S1P)的磷酸化。靶向S1P信号通路是许多人类疾病的重要策略。在此,我们评估了药用植物的主要原型生物活性成分,并用类黄酮化合物进行了虚拟筛查研究,然后对靶向癌症治疗进行了分子对接和分子动力学(MD)模拟。通过Biovia Discovery Studio(DS)确定了计算机ADMET和吸毒结果。分子对接和分子动力学(MD)模拟是通过使用过滤的配体的Glide/SP和Desmond进行的。滑行/SP对接结果显示与Xanthohumol(Xn),8-丙烷纳明蛋白(8-PN)和Neobavaisoflavone对SPHK1的结合亲和力更高。三击在靶向SPHK1的特定氨基酸残基之间显示出强氢结合。在gromacs进行的200 ns MD模拟分析期间,SPHK1-XN和SPHK1-XN和SPHK1-Neobavaisoflavone复合物之间没有显着的结构变化。将Xn-和Neobavaisoflavone-蛋白质络合物的平均值与游离SPHK1进行比较,分别为0.2626 nm,0.2589 nm和0.2508 nm。结果,XN和8-PN和Neobavaisoflavone已被确定为SPHK1的潜在抑制剂候选者,以检查进一步的体外和体内研究。
Janus 激酶 (JAK) 超家族成员包括酪氨酸激酶 2 (TYK2) 和 JAK1、JAK2 和 JAK3,它们介导参与银屑病发病机制的细胞因子(例如白细胞介素 [IL]-23)的信号传导。IL-23 与其受体结合可激活 TYK2 和 JAK2,从而触发信号转导和转录激活因子 (STAT) 易位到细胞核以调节靶基因转录,包括促炎介质基因,例如 IL-17。从生理学上讲,TYK2 仅介导免疫功能,而 JAK1、2、3 介导广泛的全身和免疫功能。正在评估单个 JAK 家族成员的抑制在包括银屑病在内的多种皮肤病适应症中的应用。因此,选择性 TYK2 抑制预计对银屑病患者几乎没有不良反应。因基因突变导致 TYK2 功能丧失的人可以避免患上银屑病,并且不会增加感染或恶性肿瘤的风险。相比之下,使用 JAK1,2,3 抑制剂治疗会产生各种全身影响。我们回顾了选择性 TYK2 抑制剂 deucravacitinib 的独特变构作用机制,该抑制剂与 TYK2 调节(假激酶)结构域结合,以及 JAK1,2,3 抑制剂的作用机制,该抑制剂与 JAK1,2,3 激酶结构域中的腺苷 5'-三磷酸结合活性(催化)位点结合。Deucravacitinib 已获准在美国和其他几个国家用于治疗成人中度至重度斑块状银屑病,是一种具有良好安全性的新型靶向全身治疗方法。
酪蛋白激酶2-α蛋白是治疗白血病癌的靶标之一,它是调节白血病癌生生长的重要分子。姜黄素化合物被证明具有2-α酪蛋白抑制剂的活性,但仍没有研究将姜黄素衍生物化合物作为2-α酪蛋白酶抑制剂进行测试。这项研究的目的是根据酪蛋白化合物及其衍生物作为酪蛋白激酶抑制剂2-αIDGDP:3PE1:3PE1通过分子对接(基于最低的键合能(ΔG)和相互作用),并知道ADMET的预测。所使用的方法是带有自动库克工具1.5.7的分子张力。接下来是Lipinski对姜黄素化合物的五(RO5)测试及其衍生物的规则,并伴随着使用Swiss Adme和Admetsar进行ADMET筛选。获得的结果是三种测试化合物,具有最佳的游离键能(ΔG),即DI -O -O -ECETEDETEDEMETHOXY CURCUMIN = -10.13 kcal/mol,二甲氧基姜黄素= -9.93 kcal/mol/mol和Dimethyl Curcumin = -9,88 kacal/mol。氨基酸残基最大程度地形成氢键的是valine(Val 116)多达22种相互作用,其次是赖氨酸(Lys 68)(Lys 68)多达18种相互作用,而天冬氨酸(ASP 175)(ASP 175)多达17个相互作用。三种最佳测试化合物还符合RO5标准,并且在这些化合物中进行ADMET筛选显示了活性预测的结果,因为2-α酪蛋白抑制剂具有吸收参数,分布,代谢,排泄,毒性(ADMET)已经很好。基于从这项研究获得的数据,预计三种最佳测试化合物具有2-α酪蛋白抑制剂的潜力。
摘要:Aurora 激酶属于高度保守的丝氨酸/苏氨酸激酶家族,在细胞周期调控中发挥关键作用,由三个成员组成:Aurora 激酶 A、B 和 C,它们是维持染色体稳定性所必需的关键有丝分裂调节剂。Aurora 激酶在有丝分裂的多个事件中起着至关重要的作用,例如协调染色体和细胞骨架事件、调节纺锤体组装检查点通路和胞质分裂,以确保细胞周期的顺利进行。除了有丝分裂功能外,Aurora 激酶还参与减数分裂的调节。在各种实体和血液系统癌症中都检测到了 Aurora 激酶的基因扩增/突变和过表达。在人类肿瘤中,Aurora 激酶表现出与其有丝分裂作用相关的致癌作用,从而驱动癌细胞增殖和存活。 Aurora 激酶活性失调会导致着丝粒功能、纺锤体组装、染色体排列和胞质分裂失败,最终导致有丝分裂异常和遗传不稳定。这些发现强调了 Aurora 激酶在癌症中的关键作用,促使人们认识到它们是癌症治疗的重要靶点。本综述概述了 Aurora 激酶的结构和功能,并阐明了它们在癌症中的致癌作用。