摘要:激光金属沉积 (LMD) 工艺是一种增材制造方法,通过激光束与气体/粉末流的相互作用生成 3D 结构。流径、表面密度和焦平面位置会影响沉积轨迹的尺寸、效率和规律性。因此,准确了解气体/粉末流特性对于控制工艺和提高其在工业应用中的可靠性和可重复性至关重要。本文提出了多种实验技术,如气压测量、光学和称重方法,以分析气体和粒子速度、粉末流直径、其焦平面位置和密度。这是针对三种喷嘴设计和多种气体和粉末流速条件进行的。结果表明:(1) 粒子流遵循高斯分布,而气体速度场更接近于平顶分布;(2) 轴向、载体和整形气流显著影响粉末流的焦平面位置;(3) 只有整形气体、粉末流速和喷嘴设计会影响粉末流直径。然后对三个喷嘴分别进行具有 RANS 湍流模型的气体和粉末流的 2D 轴对称模型,结果显示与实验结果具有良好的一致性,但压力测量对气体速度的估计过高。
摘要以其几何自由度和准确性而闻名的激光粉床融合(LPBF)以及以高堆积速率而闻名的基于喷嘴的激光金属沉积工艺(LMD)的组合具有减少大型金属零件的添加性制造时间的巨大潜力。对于LPBF-LMD混合过程链的工业应用,有必要研究LMD过程对LPBF底物的影响。此外,构建板材还对沿添加剂制造工艺链的失真发生有很大的影响。在文献中,钢制构建板经常用于Inconel 718的基于激光的添加剂制造过程中,因为可以确保良好的冶金结合,同时降低制造板的生产和恢复成本。本文研究了由LMD材料沉积引起的变形以及沿混合添加剂制造工艺链的构建板材料的影响。双悬臂是由LPBF制造的,随后将一层放置在LMD中。失真均在井期和热处理后的状态下测量。确定不同LMD孵化策略对失真的影响。实验是使用镍基合金inconel 718进行的。结果显示了LMD路径策略对失真的显着影响,较短的工具路径会导致失真较少。热处理后的剩余失真在很大程度上取决于构建板的材料。
激光金属沉积 (LMD) 是一种增材制造工艺,在制造和修复复杂功能部件方面表现出色。然而,为了提高表面质量和材料性能,生产的部件需要传统的机加工操作。由于样品在构建过程中受到高度局部的热输入,生产的部件中可能会出现局部材料性能的显著变化。这可能会影响 LMD 工艺生产的部件的可加工性。本研究旨在研究铣削工艺及其对 LMD 工艺生产的 Ti-6Al-4V 部件的表面完整性的影响。进行热处理是为了使材料的微观结构均匀化。以传统的 Ti-6Al-4V 作为参考材料样品。根据切削工艺参数,加工后的 LMD 部件的切削力和表面粗糙度分别比传统样品高 10-40% 和 18-65%。加工后的 LMD 样品中的压缩残余应力比传统样品高 11-30%。这些差异与测试部件之间的微观结构和晶粒尺寸差异有关。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)由第五届 CIRP CSI 2020 科学委员会负责同行评审
摘要:激光熔化沉积 (LMD) 近来因生产近净形零件和修复磨损部件而受到工业领域的关注。然而,LMD 在熔池动力学和流体流动分析方面仍未得到探索。在本研究中,计算流体动力学 (CFD) 和分析模型已经开发出来。流体体积和离散元建模的概念用于计算流体动力学 (CFD) 模拟。此外,设计了一个简化的数学模型,用于单层沉积,其中激光束衰减比是 LMD 工艺固有的。这两个模型都通过 Ti6Al4V 合金在 Ti6Al4V 基体上的单道沉积实验结果进行了验证。实验和建模之间有密切的相关性,只有一些偏差。此外,还设计了一种跟踪熔体流动和相关力的机制。模拟显示,由于同轴添加粉末颗粒,LMD 仅涉及传导模式熔体流动。在激光束前方,熔池呈现顺时针旋涡,而在激光点位置后方,则呈现逆时针旋涡。打印过程中,一些部分熔化的颗粒试图进入熔池,导致熔体材料内发生飞溅。在层沉积后确定了熔化状态、糊状区域(固体+液体混合物)和凝固区域。这项研究深入了解了 LMD 打印背景下的熔体流动动力学。
摘要以其几何自由度和准确性而闻名的激光粉床融合(LPBF)以及以高堆积速率而闻名的基于喷嘴的激光金属沉积工艺(LMD)的组合具有减少大型金属零件的添加性制造时间的巨大潜力。对于LPBF-LMD混合过程链的工业应用,有必要研究LMD过程对LPBF底物的影响。此外,构建板材还对沿添加剂制造工艺链的失真发生有很大的影响。在文献中,钢制构建板经常用于Inconel 718的基于激光的添加剂制造过程中,因为可以确保良好的冶金结合,同时降低制造板的生产和恢复成本。本文研究了由LMD材料沉积引起的变形以及沿混合添加剂制造工艺链的构建板材料的影响。双悬臂是由LPBF制造的,随后将一层放置在LMD中。失真均在井期和热处理后的状态下测量。确定不同LMD孵化策略对失真的影响。实验是使用镍基合金inconel 718进行的。结果显示了LMD路径策略对失真的显着影响,较短的工具路径会导致失真较少。热处理后的剩余失真在很大程度上取决于构建板的材料。
摘要:随着社会经济的发展,机械工程、航空航天等行业对能够高效利用金属材料并获得良好性能的表面处理技术的需求日益增加。激光金属沉积(LMD)熔覆技术因其稀释率较低、热影响区较小、涂层与基体之间冶金结合良好等特点成为近年来的研究热点。本文综述了LMD技术中与缺陷形成直接相关的熔池晶粒生长机制、温度和应力分布的模拟技术,同时介绍了LMD技术中缺陷的抑制方法和熔覆层性能的提升方法。最后指出根据所需性能主动选择材料,结合可控加工工艺,形成相应的组织结构,最终主动实现预期功能,是LMD技术未来的发展方向。
第 1 部分 — 《所得税法》和其他法规的修正案 《所得税法》(“法案”或“ITA”)修正案 第 2 条 劳动力流动扣除 ITA 8(1)(t) 法案第 8 条列出了一系列有关纳税人从办公室或就业收入中扣除金额的规则。新的第 8(1)(t) 款引入了劳动力流动扣除(LMD),该扣除规定,工匠或学徒因长途跋涉以赚取建筑业临时就业收入而产生的某些交通、餐饮和临时住宿费用可扣除。除第 8(14) 款中的附加规则外,纳税人当年临时搬迁相关的扣除额不得超过纳税人当年因临时搬迁所赚取的就业收入的 50%。此外,考虑到当年所有临时搬迁,根据 LMD 可扣除的总金额限制为每年 4,000 加元。该修正案适用于 2022 年及以后的纳税年度。劳动力流动性扣除——对 ITA 8(14) 的解释 新的第 8(14) 款提供了与第 8(1)(t) 款中劳动力流动性扣除 (LMD) 的应用相关的额外规则。第 8(14)(a) 款将纳税年度中符合 LMD 资格的技术工人描述为纳税人,该纳税人从作为技术工人或学徒的就业中获得收入,并履行《所得税条例》第 238(1) 款所述的建筑活动中的就业职责。纳税人必须符合第 8(1)(t) 款中的合格技术工人的资格才能申请 LMD。第 8(14)(b) 款将纳税人就 LMD 而言的“临时工作地点”描述为加拿大境内的某个地点:
位于猪染色体17上的五个单核苷酸多态性(SNP)与约克郡猪的LMD显着相关。通过整合链接差异和链接分析(LDLA)和高通量染色体构象捕获(HI-C)分析,将10 KB的定量性状基因座(QTL)鉴定为候选功能基因组区域。基于GWAS,HI-C荟萃分析和顺式调节元件数据的综合结果,BMP2基因被鉴定为LMD的候选基因。通过目标区域测序进一步验证了已鉴定的QTL区域。进一步,通过使用双 - 荧光素酶测定和电泳迁移率分析(EMSA),两个SNP,包括位于增强剂区域的SNP RS3218466600,以及位于启动子区域中的SNP RS1111440035,将其确定为候选者的SNP,是与LMD功能相关的候选SNP。
摘要:激光冲击强化 (LSP) 已被用于通过激光金属沉积 (LMD) 来改善已修复的航空发动机部件的机械性能。本研究考察了横截面残余应力、微观结构和高周疲劳性能。结果表明,在激光熔化沉积区 200 µ m 深度处形成了 240 MPa 的压缩残余应力层,显微硬度提高了 13.1%。电子背散射衍射 (EBSD) 和透射电子显微镜 (TEM) 分析的结果表明,LSP 后取向差增加,位错特征明显,有利于提高疲劳性能。高周疲劳数据显示,与原 LMD 样品相比,LMD+LSP 样品的疲劳性能提高了 61%。因此,在航空航天领域,LSP 和 LMD 是修复高价值部件非常有效且很有前途的技术。
激光金属沉积 (LMD) 是一种增材制造技术,它吸引了业界的极大兴趣,因为它有可能将具有复杂几何形状的零件一次性制成,并修复损坏的零件,同时保持良好的机械性能。然而,该工艺的复杂性限制了它的广泛应用,因为不同的零件几何形状、策略和边界条件会在外部形状和内部缺陷方面产生非常不同的结果。此外,在工艺执行过程中监控零件质量非常具有挑战性,因为直接测量结构和几何特性大多是不切实际的。这项工作提出了一种 LMD 在线监控和预测方法,该方法利用同轴熔池图像以及工艺输入数据来估计 LMD 沉积的轨道大小。特别是,一种新颖的深度学习架构将卷积神经网络的输出(以熔池图像为输入)与标量变量(工艺和轨迹数据)相结合。评估了各种网络架构,建议使用至少三个卷积层。此外,结果表明密集层的数量和大小具有一定程度的不变性。通过使用航空航天和汽车领域的相关材料 Inconel 718 粉末通过 LMD 沉积的单轨进行的实验,证明了所提出方法的有效性。