罕见的疾病由于其多种症状而经常出现微妙的症状以及其低患病率而引起了重大诊断挑战。基因组广泛的关联研究(GWAS)已经鉴定出遗传变异和疾病之间的关联,但是指出因果基因,特别是在单基因稀有疾病中,仍然很复杂。该项目利用大语言模型的力量来增强GWAS分析并改善罕见疾病的诊断。我们的方法探讨了两个关键目的:(1)给定一组通过GWAS鉴定的顶级病原基因候选者,预测与这些基因相关的可能条件,考虑它们的复杂相互作用和潜在的多源性效应,以及(2)开发LLM驱动的型框架,以使年龄较大的疾病,详细症状,临床诊断,临床诊断,临床上的疾病,概述了较高的诊断,以诊断为包括年龄的患者特征,并最大程度地诊断出临床,并诊断出临床,并诊断出临床,并诊断出临床,该临床的诊断。这种方法旨在提高诊断准确性,并减少罕见病患者诊断的时间。我们将使用已发表的稀有疾病案例研究来验证我们的模型,并将我们的性能与现有诊断方法进行比较。
摘要目的:癌细胞系的大量药物基因组学数据的快速积累为药物敏感性预测(DSP)提供了前所未有的机会,这是促进精度肿瘤学的关键先决条件。最近,生成的大语言模型(LLM)表明了自然语言处理领域(NLP)领域的各种任务的性能和概括。然而,药物基因组学数据的结构化格式对DSP中LLM的实用性提出了挑战。因此,这项研究的目的是多重的:适应结构化药物基因组学数据的及时工程,以优化LLM的DSP性能,评估LLM在现实世界DSP方案中的概括,并比较LLM的DSP性能与目前的Science-Science Baselines。方法:我们系统地研究了生成性预训练的变压器(GPT)作为四个公开基准药物基因组学数据集的DSP模型,这些模型由五种癌症组织类型的细胞系和肿瘤学和非综合药物进行分层。本质上,通过四个学习范式评估了GPT的预测格局在DSP任务中的有效性:零射击学习,几乎没有学习,微调和聚类预处理的嵌入。通过实施三个及时的模板(即指令,指导,预定,披肩)并将与药剂基因组相关的特征集成到提示中,为了促进GPT无缝处理结构化的药物基因组学数据,采用了域特异性新颖的及时工程。与最先进的DSP基准相比,GPT主张了卓越的F1性能我们验证了GPT在不同的现实世界DSP方案中的表现:跨组织概括,盲试和药物校园关联的分析以及顶级灵敏/抗性细胞系。此外,我们对GPT进行了比较评估,该评估是针对多个基于变压器的预验证模型和现有的DSP基准的。结果:在五个组织组的药物基因组学数据集上进行的广泛实验表明,微调GPT会产生最佳的DSP性能(28%F1增加,P值= 0.0003),然后群集预处理的GPT嵌入了GPT嵌入(26%F1增加,P-value = 0.0005),很少有gpt(I.但是,在零射击设置中的GPT具有很大的F1间隙,导致表现最差。在迅速工程的范围内,通过直接指导GPT有关DSP任务并诉诸简洁上下文格式(即指令 - 预备)来实现性能提高,从而导致F1性能增长22%;同时,从基因组学和/或分子特征衍生出的药物细胞线及时及格环境将F1得分进一步提高了2%。
在本文中,我们提出了一种创新的动态分类算法,旨在实现零遗漏的检测和最小误报的观察。使用监督模型将数据分配到N当量的训练子集和n个预测子集中,然后是n个单独的预测模型的独立预测。这使每个预测模型都可以在较小的数据范围内运行,从而提高了整体准确性。此外,该算法利用通过监督学习生成的数据来进一步完善预测结果,滤除未满足准确性要求的预测,而无需引入其他模型。实验性调查表明,当数据分配误差最小时,动态分类算法实现了出色的性能,而零遗漏的检测和最小的假阳性,则显着超过了现有的模型结合体。即使在分类错误较大的情况下,算法仍然可以与最新模型相提并论。这项研究的关键创新包括自我监督的分类学习,小范围子集预测的使用以及直接拒绝不合格的预测。虽然当前的算法在自动参数调整和分类模型效率方面仍然有改进的空间,但它在多个数据集中表现出出色的性能。未来的研究将着重于优化分类组件,以进一步增强算法的鲁棒性和适应性。
摘要 - 集合检测是各个领域的基本问题,例如机器人技术,计算物理和计算机图形。一般而言,碰撞检测被作为计算几何问题,而所谓的吉尔伯特,约翰逊和Keerthi(GJK)算法是当今最采用的解决方案。在1988年推出时,GJK仍然是计算两个3D凸几何形状之间距离或碰撞的最有效解决方案。多年来,它被证明是高效,可扩展的和通用的,在宽类凸形的形状上运行,范围从简单的原始词(球体,椭圆形,盒子,盒子,锥,锥,胶囊等)到涉及数千个顶点的复杂网格。在本文中,我们通过利用这两个问题是从根本上优化概率的事实来介绍了凸几何之间加速碰撞检测和距离计算的几项贡献。值得注意的是,我们确定GJK算法是凸优化中良好的Frank-Wolfe(FW)算法的特定子案例。通过调整将Polyak和Nesterov加速与Frank-Wolfe方法联系起来的最新作品,我们还提出了经典GJK算法的两个加速扩展。通过涉及日常生活对象的数百万碰撞对的广泛基准,我们表明,这两个加速的GJK扩展大大减轻了碰撞检测的总体计算负担,导致计算时间高达两倍。最后,我们希望这项工作将大大降低现代机器人模拟器的计算成本,从而允许在很大程度上依赖模拟(例如增强学习或轨迹优化)的现代机器人应用加速。
会议调查结果3介绍和场景设置3赛季1国家经验 - 管理5种非传染性疾病和心理健康方案2的挑战和心理健康会议2变革性技术 - 对NCDS的卫生保健8和心理健康课程3和精神健康会议3经验和在NCDS 10和PACIFIC ASSICON -CORMITION和CORTION 4的INTECTION -INTERCATION -INTERCATION -INTERCATION -INTERCTION -INDERACTION和CORMITION 4的经验中学到的经验,以及在Asia和Paciofic 4中的启发, NCD和心理健康课程第16条的第16条创新挑战技术展示并揭示了数字目录17 Session 7 Lifeecourse Healthy Longeity Health Healitge the Health Healitgity of NCDS和心理健康的管理18 Session 8 Session Session 8融资解决方案的卫生保健创新解决方案:创新的作用和21个混合融资模型
本研究研究了区块链技术和机器学习的整合,以增强网络安全并改善医疗保健系统中的威胁检测。随着医疗保健系统越来越容易受到网络攻击的影响,该研究探讨了区块链的分散性质如何获得电子健康记录(EHR)并改善医疗保健系统之间的互操作性。此外,它研究了机器学习算法如何实时识别异常并预测潜在的安全漏洞。这些发现突出了关键因素,例如区块链熟悉度和机器学习有效性,这些因素影响了这些技术的成功采用。模型的评估指标,包括0.97的AUC-ROC和80%的精度,表明整合区块链和机器学习为增强安全性提供了有效的解决方案。但是,确定了多共线性,数据失衡和集成复杂性等挑战。该研究以解决这些挑战的建议结束,强调需要持续改进机器学习模型,区块链集成以及员工培训,以有效地保护医疗保健系统。
(1)比利时迪彭贝克(Diepenbeek)3590的Hasselt University的生物医学研究所MS中心(生物医学研究所)。(2)Hasselt University,Agoralaan大楼D数据科学研究所(DSI),3590,Diepenbeek,比利时。 (3)D -LAB,荷兰马斯特里赫特大学马斯特里赫特大学的肿瘤学研究所精密医学系D -LAB。 (4)荷兰马斯特里赫特大学医学中心的肿瘤学和发育生物学研究所放射学和核成像系,荷兰马斯特里奇。 (5)比利时安特卫普大学安特卫普大学IMEC-Vision Lab。 (6)𝜇神经研究中心,比利时安特卫普大学,安特卫普大学。 (7)Sumo Group,idlab,根特大学-IMEC,根特,比利时。 (8)比利时Ku Leuven的Esat-Stadius。 (9)noorderhart,康复和比利时Pelt MS中心。 (10)荷兰Sittard-Geleen Zuyderland Medical Center神经病学系学术中心Zuyd。 (11)荷兰马斯特里赫特马斯特里赫特大学的心理健康与神经科学学院。 *=这些作者对这项工作同样贡献了对应作者= Philippe Lambin(philippe.lambin@maastrichtuniverity.nl)(2)Hasselt University,Agoralaan大楼D数据科学研究所(DSI),3590,Diepenbeek,比利时。(3)D -LAB,荷兰马斯特里赫特大学马斯特里赫特大学的肿瘤学研究所精密医学系D -LAB。(4)荷兰马斯特里赫特大学医学中心的肿瘤学和发育生物学研究所放射学和核成像系,荷兰马斯特里奇。(5)比利时安特卫普大学安特卫普大学IMEC-Vision Lab。(6)𝜇神经研究中心,比利时安特卫普大学,安特卫普大学。 (7)Sumo Group,idlab,根特大学-IMEC,根特,比利时。 (8)比利时Ku Leuven的Esat-Stadius。 (9)noorderhart,康复和比利时Pelt MS中心。 (10)荷兰Sittard-Geleen Zuyderland Medical Center神经病学系学术中心Zuyd。 (11)荷兰马斯特里赫特马斯特里赫特大学的心理健康与神经科学学院。 *=这些作者对这项工作同样贡献了对应作者= Philippe Lambin(philippe.lambin@maastrichtuniverity.nl)(6)𝜇神经研究中心,比利时安特卫普大学,安特卫普大学。(7)Sumo Group,idlab,根特大学-IMEC,根特,比利时。(8)比利时Ku Leuven的Esat-Stadius。(9)noorderhart,康复和比利时Pelt MS中心。(10)荷兰Sittard-Geleen Zuyderland Medical Center神经病学系学术中心Zuyd。(11)荷兰马斯特里赫特马斯特里赫特大学的心理健康与神经科学学院。*=这些作者对这项工作同样贡献了对应作者= Philippe Lambin(philippe.lambin@maastrichtuniverity.nl)
挑战:有限的访问地球观察和GNSS(全球导航卫星系统)数据。用于数据访问的重叠平台,导致数据不一致和效率低下。机会:ESA的哥白尼开放式枢纽和NASA的地球数据平台之类的举措旨在减少数据重复并提高数据共享效率,从而使农业研究和应用受益。
OVID-19非洲的疫苗扩大疫苗的扩大,疫苗覆盖率最低的大陆是目前的重点和全球优先事项。截至2022年5月1日,非洲只有17%的人已完全接种疫苗(1)。非洲的Intial疫苗接种运动受到低估疫苗捐赠的阻碍(2)。,通过多个利益相关者的努力,向非洲国家的疫苗供应在2021年后期有所增加。但是,随着疫苗的供应量增加,新的挑战变得明显,其中包括用于实施COVID-19疫苗接种服务相对较低的资源不足的卫生系统的困难,以及与成人免疫化计划和疫苗误解和误解和造成误解和造成误解的困难。面临这些挑战,Zambia政府与利益相关者合作,利用其国家艾滋病毒计划(在过去20年中获得了> 5美元的资金支持),以增强其COVID-19疫苗运动。