环孔; si 0.5 li 0.5,其中li原子最初放置在Si孔上,SIH 0.89 li 0.11,其中li原子最初
蛋白质-配体相互作用是许多生物过程的核心,是支撑从细胞信号传导到药物开发等所有过程的分子编排。了解这些相互作用的复杂性不仅是生物化学的一个基本方面,也是设计针对各种疾病的靶向疗法的关键步骤。蛋白质-配体相互作用,探索其意义、机制和应用。
摘要:已知DNA稳定的银纳米簇(Ag n -DNA)具有每纳米簇的一个或两个DNA低聚物配体。在这里,我们提供了第一个证据,表明Ag n -DNA物种可以拥有额外的氯化物配体,从而导致生物学相关浓度的氯化物的稳定性提高。质量光谱 - 五种色谱分离的近红外(NIR) - 具有先前报道的X射线晶体结构的发射Ag N -DNA物种确定其分子式为(DNA)2 [AG 16 Cl 2] 8+。氯化物配体可以换成溴化物,这些溴化物是这些发射器的光谱的红移。密度功能理论(DFT)的6-电子纳米簇的计算表明,以前通过X射线晶体学通过X射线晶体学分配了两个新鉴定的氯化物配体。dft还证实了氯化物在晶体学结构中的稳定性,得出了计算和测量的紫外线吸收光谱之间的定性一致性,并提供了(DNA)2 [AG 16 Cl 2] 8+的35个Cl-核磁共振光谱的解释。对X射线晶体结构的重新分析证实,先前分配的两个低占用银色的银色实际上是氯化物,屈服(DNA)2 [AG 16 Cl 2] 8+。使用(DNA)2 [Ag 16 Cl 2] 8+在生物学相关的盐水溶液中的异常稳定性作为其他含氯化物Ag n -DNA的可能指标,我们通过高通量筛选确定了一个具有氯化物配体的额外的Ag n -DNA。■简介将氯化物纳入Ag n -DNA中提出了一种有希望的新途径,以扩大Ag n- DNA结构 - 性质关系的多样性,并使这些发射器具有对生物探测器应用的有利稳定性。
摘要:已知DNA稳定的银纳米簇(Ag n -DNA)具有每纳米簇的一个或两个DNA低聚物配体。在这里,我们提供了第一个证据,表明Ag n -DNA物种可以拥有额外的氯化物配体,从而导致生物学相关浓度的氯化物的稳定性提高。质量光谱 - 五种色谱分离的近红外(NIR) - 具有先前报道的X射线晶体结构的发射Ag N -DNA物种确定其分子式为(DNA)2 [AG 16 Cl 2] 8+。氯化物配体可以换成溴化物,这些溴化物是这些发射器的光谱的红移。密度功能理论(DFT)的6-电子纳米簇的计算表明,以前通过X射线晶体学通过X射线晶体学分配了两个新鉴定的氯化物配体。dft还证实了氯化物在晶体学结构中的稳定性,得出了计算和测量的紫外线吸收光谱之间的定性一致性,并提供了(DNA)2 [AG 16 Cl 2] 8+的35个Cl-核磁共振光谱的解释。对X射线晶体结构的重新分析证实,先前分配的两个低占用银色的银色实际上是氯化物,屈服(DNA)2 [AG 16 Cl 2] 8+。使用(DNA)2 [Ag 16 Cl 2] 8+在生物学相关的盐水溶液中的异常稳定性作为其他含氯化物Ag n -DNA的可能指标,我们通过高通量筛选确定了一个具有氯化物配体的额外的Ag n -DNA。■简介将氯化物纳入Ag n -DNA中提出了一种有希望的新途径,以扩大Ag n- DNA结构 - 性质关系的多样性,并使这些发射器具有对生物探测器应用的有利稳定性。
摘要:氢键 (HB) 是生物系统中最丰富的基序。它们在确定蛋白质-配体结合亲和力和选择性方面起着关键作用。我们设计了两个对药物有益的 HB 数据库,数据库 A 包括约 12,000 个蛋白质-配体复合物,约 22,000 个 HB 及其几何形状,数据库 B 包括约 400 个蛋白质-配体复合物,约 2200 个 HB,它们的几何形状和键强度通过我们的局部振动模式分析确定。我们确定了七种主要的 HB 模式,可用作从头 QSAR 模型来预测特定蛋白质-配体复合物的结合亲和力。据报道,甘氨酸是供体和受体谱中最丰富的氨基酸残基,而 N–H · · · O 是数据库 A 中最常见的 HB 类型。HB 倾向于处于线性范围内,且线性 HB 被确定为最强的。HB 角在 100–110° 范围内的 HB 通常形成分子内五元环结构,表现出良好的疏水性和膜通透性。利用数据库 B,我们发现了 2200 多种蛋白质-配体 HB 的广义 Badger 关系。此外,每种氨基酸残基和配体功能团之间的强度和出现图为新颖的药物设计方法和确定药物选择性和亲和力提供了极具吸引力的可能性,它们也可作为命中到先导化合物过程的重要工具。
氧化亚铜(CuOH)是一类重要的金属化合物,包括硫族化物[5,6]、卤化物[7,8]和一些复杂的盐(例如 Chevreul 盐)[9],它们在催化[10,11]、传感[12,13]、能量转换[14,15]和光学[16]等领域有着广泛的应用。其中,氧化亚铜(CuOH)长期以来一直受到人们的广泛关注。[17,18] 早在 20 世纪初,Miller 和 Gillett 就观察到在低温下(低于 60 °C)用铜工作电极电解 NaCl 溶液时,会产生黄色的 CuOH 沉淀。[19,20] 随后,人们进行了多项研究,探究通过各种方法合成的 CuOH 的特征结构和性能。 [21–23] 然而,在早期的研究中,CuOH 大多以块状固体形式存在,结构为亚稳态,由于缺乏适当的保护以防止氧化和/或脱水,当暴露于环境或热处理时,淡黄色沉淀物会迅速变为深红色,表明形成了 Cu 2 O。这种结构不稳定性使研究所得 CuOH 的性质和应用变得困难。2012 年,Korzhavyi 等人 [24] 进行了理论研究,证明 CuOH 可以以固体形式存在;然而亚稳态导致形成各种晶体结构构型的随机混合物,例如 Cu 2 O 和冰 VII H 2 O。Soroka
摘要:金黄色葡萄球菌是一种常见的人类共生病原体,可引起多种传染病。由于抗生素耐药性的产生,病原体对越来越多的抗生素产生耐药性,从而产生了耐甲氧西林金黄色葡萄球菌 (MRSA) 甚至耐多药金黄色葡萄球菌 (MDRSA),即“超级细菌”。这种情况凸显了对新型抗菌药物的迫切需求。细菌转录负责细菌 RNA 的合成,是开发抗菌药物的有效但未充分利用的靶点。之前,我们报道了一类新型抗菌药物,称为 nusbiarylins,它通过中断两种转录因子 NusB 和 NusE 之间的蛋白质-蛋白质相互作用 (PPI) 来抑制细菌转录。在这项工作中,我们根据 nusbiarylins 的化学结构及其对金黄色葡萄球菌的活性开发了一种基于配体的工作流程。整合了基于配体的模型(包括药效团模型、3D QSAR、AutoQSAR 和 ADME/T 计算),并用于以下 ChemDiv PPI 数据库的虚拟筛选。结果,四种化合物(包括 J098-0498、1067-0401、M013-0558 和 F186-026)被鉴定为针对金黄色葡萄球菌的潜在抗菌剂,预测的 pMIC 值范围为 3.8 至 4.2。对接研究表明这些分子与 NusB 紧密结合,结合自由能范围为 -58 至 -66 kcal/mol。
二级结构。10,11 事实上,病毒基因组 RNA 的特定区域折叠成某些二级结构可能会阻碍病毒基因组的表达和复制,因为它们会阻碍病毒 RNA 转录和/或作为 RNA 加工机制附着的标志。这些结构包括 G-四链体 (G4),它是由单链富含鸟嘌呤的 DNA 或 RNA 序列自身折叠形成的四链结构。12 a,b G4 结构的特征是两个或多个平面排列的四个鸟嘌呤 (G-四联体) 堆叠,并通过 Hoogsteen 氢键和阳离子配位稳定。这些结构可能出现在具有至少四个连续的两个或更多个鸟嘌呤段的序列中,其间散布着形成所谓环的序列。 G4 在多种病毒(包括单链 RNA 病毒)中发挥着重要作用,13,14 一些靶向 G4 的化合物已显示出抗病毒活性,15 这表明 G4 特异性化合物是潜在的抗病毒药物。最近的报告在 SARS-CoV-2 基因组中发现了许多假定的 G4 形成序列,其中一些已被证明可以在体外形成 G4。11,16–18