阿尔茨海默氏症协会®国际协会推进阿尔茨海默氏症的研究与治疗(ISTAART)是一个包括科学家,临床医生和痴呆症专业人士的全球全球网络。这个专业组织的成员共有共同的目标:追求知识,协作和突破性,以推动对阿尔茨海默氏病和其他痴呆症的研究和治疗。
1 南安普顿大学 Highfield 校区生物科学学院,南安普顿 SO17 1BJ,英国;hewalker9@icloud.com 2 巴勒莫大学健康促进、母婴保健、内科和医学专科(承诺)系,意大利巴勒莫 90133;manfredi.rizzo@unipa.it 3 卢布尔雅那大学医学中心医学部预防心脏病学中心,斯洛文尼亚卢布尔雅那 SI-1525;zlatko.fras@kclj.si 4 卢布尔雅那大学医学院,斯洛文尼亚卢布尔雅那 SI-1000 5 卢布尔雅那大学医学中心血管疾病系,斯洛文尼亚卢布尔雅那 SI-1525 borut.jug@kclj.si 6 罗兹医科大学预防心脏病学和脂质学系,93338 罗兹,波兰;maciej.banach@icloud.com 7 绿山大学心血管研究中心,65046 绿山,波兰 8 利物浦约翰摩尔斯大学药学院和生物分子科学学院,利物浦 L3 3AF,英国 9 利物浦心血管科学中心,利物浦 L7 8TX,英国 * 通讯地址:P.Penson@ljmu.ac.uk
1 美国宾夕法尼亚州费城宾夕法尼亚大学生物工程系 2 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院艾布拉姆森癌症中心 3 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院免疫学研究所 4 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院心血管研究所 5 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院再生医学研究所 6 上述作者对本研究贡献相同
DOX的潜力。 以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。 然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。 基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。 纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。 网状内皮系统很容易省略大于30 nm的纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。 zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和之间的排斥力DOX的潜力。以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和
摘要:基因疗法通过基因沉默、蛋白质表达或基因校正在治疗几乎所有疾病方面具有巨大潜力。为了有效地将核酸有效载荷递送到其目标组织,遗传物质需要与递送平台相结合。脂质纳米粒子(LNP)已被证明是基因治疗的优异递送载体,并且越来越多地进入常规临床实践。在过去的二十年里,用于核酸递送的 LNP 配方的优化已经产生了完善的知识体系,最终产生了首个使用 LNP 技术的 RNA 干扰疗法,即 Onpattro,以及更多处于临床开发阶段以递送各种核酸有效载荷的疗法。通过体内筛选脂质库以获得在肝细胞中最佳的基因沉默效力,最终鉴定出 Onpattro 配方。后续研究发现,Onpattro 肝脏趋向性的关键在于它能够形成特定的“生物分子冠”。事实上,吸附在 LNP 表面的载脂蛋白 E (ApoE) 等蛋白质能够实现特定的肝细胞靶向。这一原理验证示例展示了生物分子冠在靶向特定受体和细胞方面的应用,从而为合理设计 LNP 开辟了道路。然而,到目前为止,只有少数研究详细探讨了 LNP 的冠,而如何有效调节冠仍然知之甚少。在这篇综述中,我们总结了有关生物分子冠的最新发现,将从其他纳米粒子中获得的知识扩展到用于核酸递送的 LNP。特别是,我们讨论了生物环境如何影响粒子稳定性、生物分布和 LNP 的靶向性。以 Onpattro 为例,描述了用于基因治疗的 LNP 配方的成功开发以及生物环境的关键影响。此外,我们概述了可用于分离和分析 LNP 冠的技术,并强调了它们的优点和缺点。最后,我们讨论了生物分子冠对 LNP 递送的可能影响,并研究了利用冠作为肝脏以外的靶向策略开发下一代基因疗法的潜力。■ 简介
在此技术说明中,使用杂种7600系统(杂种时间)质谱仪(TOFM)来测量大鼠血浆中靶向脂质介质的内源浓度。通常,使用具有多重反应监测(MRM)扫描模式的三倍四极质量光谱仪(TQM)进行此类分析。此方法非常敏感,并生成准确而精确的数据。但是,这种技术通常不适合通过MRM指导的数据依赖性采集(DDA)扫描同时进行结构表征,而在占空比中没有显着损失。高分辨率质谱器(HRMS),例如Zenotof 7600系统,在定量分析过程中生成完整的产物离子光谱,不会影响测定的占空比,准确性或精度。
2023年2月28日收到;修订并接受了2023年6月7日; J-Stage Advance在线出版物2023年6月22日 *这两位作者同样为这项工作做出了贡献。信函:匈奴中医大学药学院新华社300,Xueshi Road,Hanpu科学与教育花园,Yuelu District,Changsha,Hunan 410208,中国。 电子邮件:Xiaxinhua001 @ hnucm.edu.cn©2023 Tohoku University Medical Press。 这是一篇开放式文章,该文章根据创意共享归因于非商业性 - 征服4.0国际许可证(CC-BY-NC-NC-ND 4.0)的条款分发。 任何人都可以下载,重复使用,复制,重印或分发文章,而无需修改或适应非营利性,如果他们引用了原始作者并正确地来源。 https://creativecommons.org/licenses/by-nc-nd/4.0/300,Xueshi Road,Hanpu科学与教育花园,Yuelu District,Changsha,Hunan 410208,中国。电子邮件:Xiaxinhua001 @ hnucm.edu.cn©2023 Tohoku University Medical Press。这是一篇开放式文章,该文章根据创意共享归因于非商业性 - 征服4.0国际许可证(CC-BY-NC-NC-ND 4.0)的条款分发。任何人都可以下载,重复使用,复制,重印或分发文章,而无需修改或适应非营利性,如果他们引用了原始作者并正确地来源。https://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/4.0/
fi g u r e 2通过mRNA-LNP AIT调节细胞因子和抗体反应。(a)BALF中IFNγ,IL-4,IL-5和IL-17A的水平; (B – E)在脾细胞上清液中IL-5,IL-4,IFNγIL-17A的水平,用PDP1或DER P 2恢复(PA:增殖测定); (f,g)在免疫前血清或血清中的der p 1-和d p 2特异性IgE水平(OD 450nm,1/10血清稀释时的OD 450nm)或苏敏化,后征和挑战后出血中的血清中。n = 25对于后敏化水平,其他时间点n = 5; (h – i)在接种后,疫苗接种后和挑战后时间点处的PDP1-和DER P 2特异性IgG1和IgG2A抗体滴度。在幼稚小鼠的血清中未检测到特定的抗体(数据未显示)。显示了两个类似实验的代表。p值是在Mann Whitney T检验或单向方差分析中计算的,*P <.05,** P <.01,*** p <.001,**** p <.0001。 mRNA HDM H或L:以10μg/10μg或1μg/1μg剂量的PDP1-DP2K96A mRNA-LNP混合; mRNA CONT H或L:荧光素酶mRNA-LNP在20或2μg剂量下;过敏:没有AIT(PBS)。
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2024 年 5 月 31 日发布。;https://doi.org/10.1101/2024.05.29.596527 doi:bioRxiv 预印本
成簇的规则间隔短回文重复序列 (CRISPR) 相关 (Cas) 系统是一种通过 DNA 修复机制进行位点特异性基因破坏、修复和基因组 DNA 修饰的技术,有望成为治疗传染病和遗传疾病的基本治疗策略。对于临床应用,基于非病毒载体的 CRISPR/Cas 核糖核蛋白 (RNP) 递送非常重要,但递送效率低和缺乏实用的制造方法仍然是一个问题。我们在此报告了一种基于脂质纳米颗粒 (LNP) 的 Cas RNP 递送系统的开发,该系统基于优化设计的单链寡核苷酸 (ssODN),可实现高效的体内基因组编辑。序列特异性 RNP-ssODN 复合物的形成被发现对于 RNP 的功能性递送很重要。此外,sgRNA 和 ssODN 之间的熔化温度 (Tm) 对体内基因敲除效率有显著影响。具有高 Tm 的 ssODN 导致有限的敲除 (KO) 活性,而接近室温的 ssODN 显示出最高的 KO 活性,这表明 RNPs 的细胞质释放非常重要。连续两次静脉注射 Tm 优化的配方分别在 DNA 和蛋白质水平上实现了约 70% 和 80% 的转甲状腺素蛋白 KO,且没有任何明显的毒性。这些发现对安全的体内 CRISPR/Cas RNP 递送技术的开发及其在基因组编辑疗法中的实际应用具有重要贡献。