尽管网络架构性能取得了实质性进步,但对抗性攻击的敏感性使深度学习难以在安全关键型应用中实施。本文提出了一种以数据为中心的方法来解决这个问题。一种具有不同亮度值的非局部去噪方法已被用于从修改后的国家标准与技术研究所数据库 (MNIST) 和加拿大高级研究中心 (CIFAR-10) 数据集生成对抗性示例。在扰动下,该方法在 MNIST 数据集中提供了高达 9.3% 的绝对准确度提高,在 CIFAR-10 数据集中提供了高达 13% 的绝对准确度提高。使用具有更高亮度值的变换后图像进行训练可提高分类器的鲁棒性。我们已经证明迁移学习不利于对抗性机器学习。结果表明,简单的对抗性示例可以提高弹性并使深度学习更易于应用于各种应用。
©2019 Carl Zeiss Vision Inc. ZEISS Individual 是 Carl Zeiss AG 的注册商标。FaceAdapt 和 IndividualFit 是商标,i.Scription、FrameFit+、Luminance Design 和 Digital Inside 是 Carl Zeiss Vision GmbH 的注册商标。ZEISS Individual 产品采用 Carl Zeiss Vision 技术设计和制造。美国专利 6,089,713。i.Scription 产品采用 Carl Zeiss Vision 技术设计和制造。美国专利 7,744,217。其他专利正在申请中。*文件数据 - 请参阅“ZEISS SmartLife 源文档”部件号:0000139.40393。0000139.40392,修订版 10/19
摘要 尽管显示技术取得了进步,但许多现有应用仍依赖于使用较旧的、有时是过时的显示器收集的人类感知的心理物理数据集。因此,存在一个基本假设,即此类测量可以延续到更现代技术的新观看条件中。我们已经进行了一系列心理物理实验,以使用最先进的 HDR 显示器探索对比敏感度,不仅考虑了刺激的空间频率和亮度,还考虑了它们周围的亮度水平。从我们的数据中,我们得出了一个新颖的环绕感知对比敏感度函数 (CSF),它可以更准确地预测人类对比敏感度。我们还提供了一个实用版本,它保留了我们完整模型的优势,同时实现了轻松的向后兼容性,并在许多使用 CSF 模型的现有应用程序中始终产生良好的结果。我们展示了使用源自 CSF 的传递函数、色调映射和改进的视觉差异预测准确度进行有效 HDR 视频压缩的示例。
到目前为止,已经探索了许多无金属TADF分子,以高效率为蓝色,绿色和红色的电脑(EL),其最大外部量子效率(EQE MAX)分别超过38%,11 37%12和27%,分别为13。尽管出现了出色的EQE值,但由于较高的能量水平和更长的兴奋状态寿命,蓝色OLED往往显示出比绿色和红色的稳定性差得多。14,15尽管设备寿命是进一步商业化OLED的关键参数,但在各种文献研究中通常不会收集或提及。16要解决蓝色TADF OLED的固有不稳定,替代策略已被广泛使用并被证明是最有效的方法之一。duan和同事通过将TERT - 丁基取代基作为空间盾牌引入了有效和稳定的蓝色TADF发射器,这不仅提高了光致发光的效率,而且还提高了TADF分子的稳定性。17因此,在
显示 – 阳光下可读 分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。VGA - 640(宽)x 480(高) 屏幕尺寸(对角线)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5.7 英寸 像素配置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。R、G、B 条纹 亮度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。120 英尺朗伯,LED 照明 视角。。。。。。。。。。。。。。。。。。。...。。。。。。。。。。。。。。。。。。。。。。。。。。。+/- 80 o(水平),+80/-60 o(垂直) 对比度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....500:1(典型值) 触摸屏 .................。。。。。。。。。。。。。。。。。。。。。。。。...........5 线电阻,GFG 结构
眩光为/nz 1158.2:2020视力条件,其中由于不合适的分布或亮度范围或视觉领域的极端对比,看到或降低了看见或两者的能力或两者兼而有之。眩光可以包括:(a)残疾眩光 - 眩光会损害物体的可见性而不会引起不适。(b)不适的眩光 - 眩光会引起不适,而不必损害物体的可见性。阈值增量(TI)为/NZ 4282:2019
低功耗CMOS工艺 OUT输出口耐压24V VDD内置5V稳压管,串联电阻后支持6-24V电压 15mA固定恒流输出 PWM亮度控制电路,256级亮度控制 精确的电流输出值 最大误差(通道间):±3% 最大误差(芯片间):±5% 单线串行级联接口 单线两通道串行级联接口:芯片数据接口可以通过命令配置DI或者FDI引脚输入,正常模式下输入接口互相切换,DI工作模式下DI引脚输入数据,FDI工作模式下FDI引脚输入数据,D0引脚转发级联数据,该信号不会因为某一芯片的异常而影响其它芯片的正常工作 振荡方式:内置RC振荡,根据数据线上的信号进行时钟同步,在接收到当前单元的数据后自动重新生成后续数据并通过数据输出端送到下一级,信号不随级联距离的增大而失真或衰减 内置上电复位电路,上电复位后所有寄存器均清零初始化 数据传输速率800KHz 封装方式:SOP8和SOT23-8
输入级的第二部分包含色差信号和亮度信号的输入。75% 彩条的条件是引脚 1 处的 − (R − Y) = 1.05 V(峰峰值)、引脚 3 处的 − (B − Y) = 1.33 V(峰峰值)和引脚 5 处的 Y = 1 V(峰峰值)无同步。经过箝位和消隐后,对幅度和极性进行校正,以使信号等于矩阵输出的信号。信号连接到开关。通过多路复用器控制引脚(引脚 2),可以在两个输入部分之间快速切换。
输入级的第二部分包含色差信号和亮度信号的输入。75% 彩条的条件是引脚 1 处的 − (R − Y) = 1.05 V(峰峰值)、引脚 3 处的 − (B − Y) = 1.33 V(峰峰值)和引脚 5 处的 Y = 1 V(峰峰值)无同步。经过箝位和消隐后,对幅度和极性进行校正,以使信号等于矩阵输出的信号。信号连接到开关。通过多路复用器控制引脚(引脚 2),可以在两个输入部分之间快速切换。