粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。超导磁体的发展离不开超导射频腔的快速发展,超导射频腔用于加速粒子束,这一点从 20 世纪 90 年代 LHC 前身 LEP 的升级,到如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现,都可见一斑。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心 (CERN) 正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学正与工业界一起帮助我们实现全部
粒子物理学和超导性紧密相连。由超导电缆制成的磁铁,尤其是由铌钛制成的磁铁,可使高能束流在对撞机中循环,并为粒子探测器提供更强的磁场。LHC 是有史以来最大的超导机器,而它的两个探测器包含规模空前的超导磁体,使希格斯玻色子在五年前被发现。对更高性能机器的需求,例如 LHC 光度升级和未来的圆形对撞机,需要下一代导体,例如铌锡,而 CERN 正在朝着此类技术快速迈进。继 MRI 之后,粒子物理学是超导体公司的最大客户,而 ITER 聚变实验也对全球铌锡生产产生了巨大影响。除了超导磁体之外,超导射频腔也得到了快速发展,用于加速粒子束——正如 20 世纪 90 年代 LHC 前身 LEP 的升级以及如今欧洲 X 射线自由电子激光器和可能的线性对撞机的实现所展示的那样。高温超导体有望实现性能飞跃,30 年前人们就发现了高温超导体,但至今仍是一个谜。欧洲核子研究中心正在这一领域取得重要进展,并已启动培训下一代超导研究人员的计划。粒子物理学与工业界一起帮助我们实现全部
多十年的理论效果已致力于找到一种有效的机制,用于使用Kerr-Newman Black Hole(BH)的旋转和电动力学可提取能,以为诸如γ-射线爆发(GRBS)和Active calactic untactic uneclei等最有能力的天体物理来源。我们显示了一个有效的一般相对论的电动力学过程,该过程发生在二进制驱动的超诺夫(Hypernova)的“内引擎”中。内部发动机由质量M的旋转KERR BH和无量纲的自旋参数α组成,强度B 0的磁场与旋转轴平行,并平行于旋转轴,以及非常低的密度离子化等离子体。在这里,我们表明,BH和磁场之间的引力磁相互作用引起了一个电场,该电场将来自环境的电子和质子加速到发射同步辐射的超层状能量。我们表明,在GRB 190114C中,质量m = 4的BH。4 m⊙,α= 0。4,B0≈4×10 10 g可以导致10 51 ERG S-1的高能量(GEV)发光度。内部发动机参数是通过要求(1)BH提取能解释了GEV和超弱的发射能量的确定的,(2)认为发射光子不受磁对生产的影响,并且(3)同步加速器辐射时间刻度与观察到的高emenergy TimeScale同意。我们发现GRB 190114C与BH旋转轴相对于BH旋转轴的半姿势角度大约60°的GEV能量清晰的喷射发射。
摘要:报告了在 2016–2018 年 CERN LHC 的 CMS 实验记录的质子-质子碰撞数据中寻找重共振和衰变成 e µ 、e τ 和 µτ 终态的量子黑洞,这些数据是在√ s = 13 TeV 时记录的,对应的积分光度为 138 fb − 1 。重建了 e µ 、e τ 和 µτ 不变质量谱,未发现超出标准模型的物理证据。对于轻子味违反信号,截面与分支分数乘积的上限设定为 95% 的置信水平。研究了三个基准信号:R 宇称违反超对称模型中的共振 τ 中微子产生、具有轻子味违反衰变的重 Z ′ 规范玻色子以及具有额外空间维度的模型中的非共振量子黑洞产生。共振 τ 中微子在 e µ 通道中质量不超过 4.2TeV,在 e τ 通道中质量不超过 3.7TeV,在 µτ 通道中质量不超过 3.6TeV 时被排除。具有轻子味破坏耦合的 AZ ′ 玻色子在 e µ 通道中质量不超过 5.0TeV,在 e τ 通道中质量不超过 4.3Te V,在 µτ 通道中质量不超过 4.1TeV 时被排除。基准模型中的量子黑洞在 e µ 通道中阈值质量不超过 5.6TeV,在 e τ 通道中阈值质量不超过 5.2Te V,在 µτ 通道中阈值质量不超过 5.0TeV 时被排除。此外,还提取了与模型无关的限制,以便与具有相同最终状态和类似事件选择要求的其他模型进行比较。这些搜索的结果为发生轻子味道破坏衰变的重粒子提供了对撞机实验中最严格的限制。
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
2025 年至 2027 年间,CMS(紧凑型μ子螺线管)探测器的一些重要组件(最显著的是跟踪器和量热仪端盖)将进行升级,以应对 HL-LHC(高亮度大型强子对撞机)条件。升级后的 CMS 外部跟踪器和新型 CMS 高粒度量热仪(HGCAL)的部件将包含超过 50,000 个新型硅传感器,总面积约为 800 平方米。传感器批量生产需要专门的策略来监控生产过程的质量和稳定性。该策略基于一个测试结构集,可通过该结构集快速轻松地访问关键工艺参数。这些参数包括传感器上无法直接访问的参数(例如氧化物电荷浓度和界面陷阱密度)以及需要潜在破坏性测量的参数(例如介电强度)。该组在每个生产晶圆上至少实施两次。它分为用于初步评估最相关工艺参数的测试结构和用于深入分析的结构。所有结构都可使用 20 针探针卡和自动定位台进行接触。使用该系统,大约 30 分钟内即可完成一个晶圆的初步分析。在本文中,CMS 合作提出了第二阶段升级的质量保证计划,重点是工艺质量控制。我们介绍了传感器工艺细节、将在 CMS 外部跟踪器和 HGCAL 的生产运行中实施的测试结构集的布局,以及说明所含测试结构功能的测量结果。
模拟在粒子和核物理学中起重要作用。它被广泛用于DECOTER设计和实验数据和理论模型之间的比较。在特定上,模拟依赖于蒙特卡洛方法,需要显着的计算资源。尤其是,这种方法不能扩展以满足高光度大型强子对撞机(HL-LHC)运行期间预期的大量数据所产生的增长需求。使用众所周知的仿真软件Geant4捕获的粒子碰撞和相互作用的详细模拟需要数十亿个CPU小时,构成了LHC实验的一半以上的计算源[1,2]。更具体地说,对热量表中粒子阵雨的详细模拟是计算最高的步骤。已经开发了利用重复使用先前计算或测量物理量的思想的模拟方法,以减少计算时间[3,4]。这些方法从专门进行到单独的实验中,尽管它们比完整的模拟更快,但它们的速度不够快或缺乏准确性。因此,粒子物理社区需要使用新的更快的模拟方法来建模实验。模拟热量计响应的可能方法之一是使用深度学习技术。,特别是最近的工作[5]提供了证据,表明可以使用生成性副本网络来效果模拟粒子阵雨。虽然实现了超过100 000倍的速度,但设置非常简单,因为输入粒子为
定位病变是结肠镜检查的主要目标。3D感知技术可以通过恢复结肠的3D空间信息来提高病变局部局部的准确性。但是,现有方法集中于单个帧的局部深度估计,并忽略了结肠镜的精确全局定位,因此未能提供病变的准确3D位置。此短缺的根本原因是双重的:首先,现有方法将结肠深度和结肠镜构成估计为独立任务,或将其设计为并行子任务分支。其次,结肠环境中的光源与结肠镜一起移动,从而导致连续框架图像之间的亮度波动。为了解决这两个问题,我们提出了一个新型的基于深度学习的视觉探针框架Colvo,它可以使用两个关键组成部分不断地估算结肠深度和结肠镜姿势:深度和姿势估计的深度策略(DCDP)和轻型一致的校准机制(LCC)。dcdp对夫妇融合和损失函数的利用对夫妇深度和构图估计模式的限制确保了连续帧之间几何投影的无缝比对。同时,LCC通过重新校准相邻帧的光度值来解释亮度变化,从而增强了Colvo的鲁棒性。对COLVO在结肠探测基准上进行的全面评估揭示了其在深度和姿势估计的最新方法上的承受能力。我们还展示了两个有价值的应用:肠道立即定位和完整的3D重建。Colvo的代码可从https://github.com/xxx/xxx获得。
光与空间运动(起源于 20 世纪 60 年代)与数字技术和现代计算机编程的发展相吻合,近年来,艺术家们采用高科技工艺,通过色彩、比例、亮度和空间幻觉的微妙或深刻变化,更加追求改变观众的感知。光/空间/代码揭示了过去半个世纪以来光与空间艺术在新兴技术背景下的演变。展览首先从几何和光普画家的作品中识别前数字系统式思维方法开始,当时辐射颜料和催眠构图推断出光的力量。然后,光雕塑介绍光这种媒介作为电子工具的一种表达。最后,软件生成的可视化突出了空间成像和网络空间动画方面的先进工作。几件动态和交互式作品将艺术的范围扩展到观众参与的现实空间。光/空间/代码的一个关键子情节涉及自然世界及其生态。由于光与空间运动是环境艺术运动(即 Earthworks)的产物,其材料直接取自自然现象,因此光与空间艺术家关注的是地球上生物及其栖息系统的当代状况。从系统艺术到生态系统的这一概念性步骤非常重要。为此,艺术家们利用自然作为工具和主题,包括重力(莫里斯·路易斯)、火(斯宾塞·芬奇)、植物(詹妮弗·斯坦坎普)、风(罗伯特·劳森伯格)、土壤(约翰·杰拉德)、宇宙(利奥·维拉雷亚尔和阿尔弗雷德·詹森)和人类(吉姆·坎贝尔)。
摘要:准确确定粒子径迹重建参数将成为高亮度大型强子对撞机 (HL-LHC) 实验面临的主要挑战。HL-LHC 同时发生的碰撞数量预计会增加,探测器占用率也会随之提高,这将使径迹重建算法对时间和计算资源的要求极高。命中次数的增加将增加径迹重建算法的复杂性。此外,由于探测器的分辨率有限以及命中的物理“接近度”,将命中分配给粒子径迹的模糊性也会增加。因此,带电粒子径迹的重建将成为正确解释 HL-LHC 数据的主要挑战。目前使用的大多数方法都基于卡尔曼滤波器,这些滤波器被证明是稳健的,并提供良好的物理性能。但是,它们的扩展性预计会比二次方差。设计一种能够在命中级别减少组合背景的算法,将为卡尔曼滤波器提供更“干净”的初始种子,从而大大减少总处理时间。量子计算机的显着特征之一是能够同时评估大量状态,使其成为在大型参数空间中进行搜索的理想工具。事实上,不同的研发计划正在探索量子跟踪算法如何利用这些功能。在本文中,我们介绍了我们在实现基于量子的轨迹查找算法方面的工作,该算法旨在减少初始播种阶段的组合背景。我们使用为 kaggle TrackML 挑战设计的公开数据集。