密度矩阵在量子力学中用于给出量子系统的部分描述,其中省略了某些细节。例如,在由两个或多个子系统组成的复合量子系统中,人们可能会发现,只构造其中一个子系统的量子描述很有用,无论是在单个时间还是作为时间函数,而忽略其他子系统。或者,量子系统的确切初始状态未知,人们希望使用概率分布或预概率作为初始状态。概率分布用于经典统计力学以构造部分描述,密度矩阵在量子统计力学中起着类似的作用,这超出了本书的范围。在本章中,我们将提到密度矩阵在量子理论中的几种使用方式,并讨论它们的物理意义。正算子和密度矩阵在第 3.9 节中定义。概括地说,正算子是特征值非负的 Hermitian 算子,密度矩阵 ρ 是迹(特征值之和)为 1 的正算子。如果 R 是正算子但不是零算子,则其迹大于零,并且可以通过公式定义相应的密度矩阵
电子纺织品[5] 柔性触摸界面[6] 软机器人[7] 医疗监测[8] 和能量收集。[9] 智能材料在这些应用中占有重要地位。它们可以被描述为对外部刺激(以化学或物理刺激的形式)做出反应的材料,从而导致材料特性发生特定变化。如今,已经开发出多种智能聚合物材料,用于电容式或电阻式压力传感器以及湿度检测等应用。相对湿度是从农业生产到医疗监测等不同领域需要考虑的重要参数。[10,11] 人们提出了各种湿度传感器,它们具有多种传感技术,例如电容式、电阻式、电磁式、重量法和光学读数。[12,13] 电容式湿度传感器由夹在两个电极之间的活性传感材料制成。对于这种类型的传感器,人们实施了不同的方法来提高其灵敏度。第一个重要因素是传感材料的物理性质。许多研究人员对金属有机骨架 (MOF) 的使用很感兴趣,因为它们具有高孔隙率和高比表面积,可用于
因果关系这一主题最近在量子信息研究中引起了广泛关注。这项工作研究了过程矩阵之间的单次判别问题,这是一种定义因果结构的通用方法。我们提供了正确区分的最佳概率的精确表达式。此外,我们提出了一种使用凸锥结构理论实现此表达式的替代方法。我们还将判别任务表示为半正定规划。因此,我们创建了 SDP 来计算过程矩阵之间的距离,并根据迹范数对其进行量化。作为一个有价值的副产品,该程序找到了判别任务的最佳实现。我们还发现了两类可以完美区分的过程矩阵。然而,我们的主要结果是考虑与量子梳相对应的过程矩阵的判别任务。我们研究了在判别任务期间应使用哪种策略(自适应或非信号)。我们证明了无论选择哪种策略,区分两个过程矩阵为量子梳的概率都是相同的。
我们设计了一种通过相空间分布相关性来认证非经典特征的方法,该方法统一了准概率和相关函数矩阵的概念。我们的方法补充并扩展了基于切比雪夫积分不等式的最新结果 [Phys. Rev. Lett. 124, 133601 (2020)]。这里开发的方法在相空间中的任意点关联任意相空间函数,包括多模场景和高阶相关性。此外,我们的方法提供了必要和充分的非经典性标准,适用于 s 参数化函数以外的相空间函数,并且可以在实验中使用。为了证明我们技术的强大功能,我们仅使用二阶相关和 Husimi 函数来验证离散和连续变量、单模和多模以及纯态和混合态的量子特性,这些函数始终类似于经典概率分布。此外,我们还研究了我们方法的非线性推广。因此,我们设计了一个通用且广泛适用的框架,以揭示相空间分布矩阵中的量子特性。
电子邮件:a.mohammadi@ipm.ir†瑞士EthZéurich组合算法理论。电子邮件:phamanhthang.vnu@gmail.com•瑞士EthZéurich计算机科学系。电子邮件:yitwang@student.ethz.ch
日出大学,拉贾斯坦邦阿尔瓦尔 摘要:矩阵是人工智能 (AI) 的基础,是各种应用程序中数据表示、操作和转换的关键工具。从机器学习算法到神经网络架构,矩阵理论支持基本计算过程,使 AI 系统能够管理海量数据集、检测复杂模式并执行复杂转换。本文探讨了矩阵在 AI 中不可或缺的作用,重点介绍了线性和逻辑回归中的基本矩阵运算,以及它们在卷积神经网络 (CNN) 和循环神经网络 (RNN) 等更高级模型中的应用。探讨了矩阵分解和特征值计算等关键数学运算在数据缩减和特征提取中的重要性,从而提高了计算机视觉、自然语言处理 (NLP) 和机器人等领域的计算效率。本文还解决了与大规模矩阵运算相关的计算挑战,例如高维数据处理、可扩展性和数值稳定性。为了克服这些限制,我们讨论了分布式矩阵计算框架、GPU 和 TPU 硬件加速以及稀疏矩阵技术的进步,展示了这些创新如何提高 AI 模型的效率和可扩展性。此外,量子计算和矩阵专用硬件解决方案的最新进展为未来的研究提供了有希望的方向,有可能通过实现矩阵计算的指数级加速来彻底改变 AI。总体而言,矩阵仍然是 AI 计算能力的核心,它提供了一个多功能且高效的框架,既支持当前的应用,也支持人工智能的新兴功能。关键词:矩阵理论、线性代数、机器学习、人工智能、奇异值分解 (SVD)。