与传统技术相比,热除冰和融雪方法在控制交通基础设施表面冬季状况方面具有多种优势。这些包括自动控制安全的表面条件、避免化学物质及其对环境的影响以及延长基础设施的使用寿命。水力传热系统可以利用夏季收集的太阳能和地热交换的季节性热能储存。将这些可再生资源与能源储存结合起来可以节省一次能源。2021 年 6 月,国际能源署 (IEA) 启动了一个项目,旨在利用地面热能源为交通基础设施的表面除冰。本文首次概述了项目目标和方法。© 2022 作者。由 ELSEVIER BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(https://creativecommons.org/licenses/by-nc-nd/4.0)由交通研究领域 (TRA) 会议科学委员会负责同行评审 关键词:除冰;融雪系统;地源;基础设施
法律免责声明 本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果作出任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
基于钛铝化物 (TiAl) 金属间化合物的合金重量轻,且具有优异的高温强度和抗氧化性。因此,在降低燃料消耗等需求的背景下,它们越来越多地用于商用飞机喷气发动机的低压涡轮叶片。神户制钢所一直致力于开发具有国际竞争力的 TiAl 材料制造技术,利用添加高浓度铝时氧溶解度降低的现象设计了一种熔体脱氧方法,并实现了 0.03 质量% 或更低的氧浓度。该公司还通过构建使用冷坩埚感应熔炼 (CCIM) 方法的熔炼和铸造工艺,实现了窄成分范围(Al 含量±0.3 质量%)并提高了铸造产量(与传统方法相比 +25% 或更高)。本文还详细介绍了回收钛废料的技术并描述了未来的前景。
表2。晶格和相对密度的平均值。结构I II II III III尺寸[mm] 4 7 10 4 7 10 4 7 10 M Latt [G] 5.832 3.139 2.018 12.016 7.512 6.806 10.298 9.697 9.697 8.887 8.887 /S 24.615 V * [mm 3] 1319.532 710.180 456.661 2718.602 1699.622 1539.869 2329.839 2193.841 2010.583
本论文由 Scholars' Mine(密苏里科技大学图书馆和学习资源服务)提供。本作品受美国版权法保护。未经授权的使用(包括复制再分发)需要获得版权持有人的许可。如需更多信息,请联系 scholarsmine@mst.edu。
摘要。本文研究了垂直热量储能系统中相变材料(PCM)的熔融行为,并在传热管表面上提供了均匀和可变长度的薄矩形鳍。选定的PCM和传热液(HTF)分别是石蜡和水。HTF通过直径为10毫米的螺旋盘铜管,以熔化PCM。发现使用FINS中PCM熔化所需的时间为五个小时,而对于没有鳍的系统,五个小时和四十分钟,对于恒定水温的相同条件约为70°C,流速为0.02 kg/s。与没有鳍的HTF管相比, HTF管的融化速度比熔融速度更快13.33%。 这样的快速充电过程将有助于在瘦生产时间内的太阳热恢复和热恢复应用中短时间/时间较短的时间内存储最大能量。 ©2020。 cbiore-jred。 保留所有权利HTF管的融化速度比熔融速度更快13.33%。这样的快速充电过程将有助于在瘦生产时间内的太阳热恢复和热恢复应用中短时间/时间较短的时间内存储最大能量。©2020。cbiore-jred。保留所有权利
紫外纳秒激光退火 (LA) 是一种强大的工具,需要严格限制的加热和熔化。在半导体技术中,随着所提出的集成方案的复杂性不断增加,LA 的重要性也随之增加。优化 LA 工艺以及实验设计具有挑战性,尤其是当涉及具有各种形状和相的复杂 3D 纳米结构系统时。在这种情况下,需要对激光熔化进行可靠的模拟,以优化工艺参数并减少实验测试次数。这产生了虚拟实验设计 (DoE)。𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 合金如今因其与硅器件的兼容性而被使用,从而能够设计应变、载流子迁移率和带隙等特性。在这项工作中,用有限元法/相场方法模拟了松弛和应变𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 的激光熔化过程。具体来说,我们使用实验数据校准了合金结晶相和液相的介电函数。我们强调了重现不同聚集状态下空气与材料界面的精确反射率的重要性,以正确模拟该过程。我们间接发现了熔体硅锗光学行为的有趣特征。
对于这两项挑战,工业 4.0 中的大数据和人工智能 (AI) 等技术和学科的结合,使得拥有强大的预测、探索性分析和描述性分析平台成为可能。如今,钢铁生产主要通过两种途径进行:高炉和电弧炉 (EAF)。废钢和直接还原铁 (DRI) 的混合物用于生产工业用钢,然后制成热轧板坯。在 EAF 工艺过程中,废钢和 DRI 的混合物被熔化,产生温度高达 1,630ºC 的钢水。电能和放热反应产生的能量用于进行这种熔化。与许多批量生产过程一样,提高生产率同时降低能耗对于降低运营成本至关重要,因此,控制 EAF 工艺每个阶段的温度等工艺变量在工艺控制中起着重要作用。
本研究系统地分析和优化了纯铜电子束熔炼工艺。结果表明,为了可靠制造,应优化预热温度以避免孔隙率和部件变形。电子束应完全聚焦,以防止收缩空隙(与负散焦相关)和材料飞溅(与正散焦相关)。较低的网格间距(例如 100µm)可使表面更光滑,从而提高密度可靠性,而较高的网格间距可达到更长的悬垂。还采用了合适的起始轮廓策略来减轻边界孔隙率、降低侧面粗糙度并提高几何精度。© 2022 作者。由 Elsevier Ltd 代表 CIRP 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
图1 NiTi粉末的SEM/EDS表征:(a)粉末形貌,(b)粉末横截面和EDS取样点位置,(c)Ni元素分布,(d)Ti元素分布和(e)四个点的EDS峰值