在本研究中,我们制造了一种 Ta/HfO 2-x /Mo 基单细胞忆阻器,这是一种全球独一无二的配置。研究了基于 HfOx 的忆阻器器件上钽和钼电极的突触行为。使用脉冲激光沉积 (PLD) 方法生长 HfO 2-x (15 nm),并使用溅射系统和光刻法制造电极。通过 X 射线光电子能谱 (XPS) 确定金属氧化物化学计量。成功获得了长期增强 (LTP) 和成对脉冲促进 (PPF) 特性,它们在人工神经网络的学习过程中发挥着重要作用。进行了电流-电压测量和保持测试,以确定器件在适当范围内的 SET 和 RESET 状态。结果表明,该忆阻器器件是人工神经网络 (ANN) 应用的有力候选者。
非挥发性电阻开关,也称为忆阻器 1 效应,即电场改变双端器件的电阻状态,已成为高密度信息存储、计算和可重构系统 2 – 9 开发中的一个重要概念。过去十年,非挥发性电阻开关材料(如金属氧化物和固体电解质)取得了实质性进展。长期以来,人们认为漏电流会阻止在纳米薄绝缘层中观察到这种现象。然而,最近在过渡金属二硫属化物 10, 11 和六方氮化硼 12 夹层结构(也称为原子阻断器)的二维单分子层中发现的非挥发性电阻开关推翻了这种观点,并由于尺寸缩放的好处增加了一个新的材料维度 10, 13。我们在此以单层 MoS 2 为模型系统,阐明了原子片中切换机制的起源。原子成像和光谱表明,金属取代硫空位会导致电阻发生非挥发性变化,这得到了缺陷结构和电子状态计算研究的证实。这些发现提供了对非挥发性切换的原子理解,并开辟了精确缺陷工程的新方向,精确到单个缺陷,朝着实现最小的忆阻器的方向发展,以应用于超密集存储器、神经形态计算和射频通信系统 2、3、11。通过结合扫描隧道显微镜/扫描隧道光谱 (STM/STS) 和局部传输研究,我们观察到硫空位(MoS 2 单层中的主要缺陷)在其天然形式下不起低电阻路径的作用,这与金属氧化物存储器中氧空位的影响形成鲜明对比。 然而,从底部或顶部电极迁移的金属离子(例如金离子)可以取代硫空位,产生导电的局部态密度 (LDOS),从而驱动原子片进入低阻状态。 在反向电场下去除金原子后,缺陷恢复其初始空位结构,系统返回到高阻状态。 这种导电点切换机制类似于在原子级上形成导电桥存储器 14。然而,它本质上是不同的,也是独一无二的,因为单个金属离子填充了晶格中的单个空位,而不是通过高度无序的材料形成金属桥。我们发现硫空位在 2 纳米间距处稳定,导致忆阻器密度约为每 1 个单位
摘要:本研究提出了辐射热熟人(RTM)的理论框架,利用繁殖的二氧化钒(WVO)作为相位变化材料(PCM)和远场状态中的硅胶(PCM)和硅碳化物(SIC)。通过Lissajous曲线描绘了RTM的行为,说明了净通量(Q)与定期调制温度差∆ T(t)之间的关系。可以确定,RTM的磁场(M)的温度变化形成一个由PCM滞后作用的封闭环。分析探讨了导热率对比度(R)和周期热输入振幅(θ)对Q – ∆ T曲线的影响(θ)以及M – ∆ T曲线和负差分热电阻(NDTR)的影响,从而揭示了对曲线形状和NDTR的出现的显着影响。增加的R会导致Lissajous曲线的形状变化并增强NDTR的影响,而R和(θ)的变化显着影响Q值和Lissajous曲线振幅。在M – ∆ T曲线中,高度与热导率对比度(R)有关,R的增加导致曲线高度较高。
摘要 - 纤维形的备忘录吸引了人们作为潜在的可穿戴电子产品的关注。在这里,为人工突触和神经形态计算提供了带有纤维形状的Cu-ion扩散的备忘录。纤维形扩散的备忘录在扫描扫描下表现出逐渐的电导调节特性。Memristor成功地实现了典型的突触可塑性,包括EPSC,PPF,PPD,LTP/LTD和学习行为。散射回忆器的活性Cu 2 +与生物突触中的Ca 2 +扩散相似,这是实现突触可塑性功能的基础。纤维形的Cu 2 +扩散的回忆录充当人造突触为下一代可穿戴神经形态计算系统铺平道路。
在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
本最终技术报告详细介绍了 AFRL 拨款 FA8750-18- 2-0122 下取得的成果。该项目的总体目标是开发一个基于忆阻器的神经形态计算硬件平台。在简要介绍背景和原理之后,介绍了技术方法。以下各节总结了设备、阵列和集成系统级别的研究成果。利用我们之前在设备开发和单晶体管单电阻 (1T1R) 阵列集成方面的成就,我们实现了全硬件忆阻多层神经网络,集成了用于并行图像和视频处理的三维 (3D) 忆阻器阵列,并构建了用于时间编码计算的新测试器。我们还开发了新的选择器设备,展示了单选择器单电阻 (1S1R) 阵列集成,展示了储层计算,并提出了扩散和漂移忆阻器的统一紧凑模型。
当前的网络功能在固定的编程规则上很大程度上建立,并且缺乏支持更具表现力的学习模型的能力,例如使用神经形态计算的脑启发的认知计算模型。造成这种缺点的主要原因是基于TCAM基于TCAM的数字数据包处理器的巨大能源消耗和限制。在这项研究中,我们表明,来自模拟领域的最新新兴技术具有很高的潜力,可以以能效和表现力,所谓的认知功能支持网络功能。我们建立了一个名为Memristors的新技术,建立了一个模拟数据包处理架构。我们开发了一种新颖的模拟匹配性记忆,称为概率内容 - 可寻址内存(PCAM),用于支持确定性和概率匹配函数。我们开发了程序抽象,并显示了PCAM对基于队列管理的模拟网络功能的支持。对回忆录芯片的实验数据集的分析仅显示0。01 fj/bit/能量消耗的单元,用于响应模拟计算,比数字计算少50倍。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
基于电阻开关的忆阻器 (RS) 是一种令人着迷的新兴存储技术,由于其 1 – 8 个优点而备受关注,包括可行、运行速度快、长时间保留、高密度和低能耗。为了模仿生物体对外部刺激作出反应并存储感知信号的功能,集成记忆感应系统应运而生。例如,Bowen Zhu 等人 9 将压力传感器集成到记忆装置中,在最先进的电子皮肤装置和皮肤启发集成触觉记忆装置之间建立了桥梁,以模仿自然皮肤的触觉记忆。在另一个例子中,就视觉记忆系统而言,将紫外光传感器集成到忆阻器阵列上能够为认知任务提供必要的外部感觉记忆。10,11