毫米级、大面积均匀半导体器件分层用于物理故障分析和质量控制 Pawel Nowakowski*、Mary Ray、Paul Fischione EA Fischione Instruments,Export,宾夕法尼亚州,美国* 通讯作者:p_nowakowski@fischione.com 不断发展的微电子设备设计越来越复杂、越来越紧凑和越来越小。这些设计可能包括越来越多的层、三维 (3D) 垂直堆叠、气隙和不同的材料成分。大批量半导体器件制造需要强大的质量控制和故障分析过程。过去几十年来,已经开发出了许多故障分析技术,包括非破坏性和破坏性技术 [1-3]。一种非常流行的技术是器件分层,即从上到下控制地去除器件层。通过这种技术获得的信息可以支持质量控制、故障分析工作、成品和工艺改进数据以及逆向工程。
对位置敏感的SIPM在所有光检测应用中都有用,需要少量读出通道,同时保留有关传入光的相互作用位置的信息。专注于2x2阵列的LG-SIPM,覆盖15的面积。5×15。 5 mm只有6个读数,我们提出了一种定量方法来评估图像重建性能。 该方法基于一种统计方法,以评估设备的精度(空间分辨率)和重建重点重心的精度(线性)。 通过大米概率分布函数拟合来实现此评估。 我们获得了平均传感器空间分辨率的最佳值81±3 µm(标准偏差),这是通过以通道输出信号的幅度重建每个位置来实现的。 相应的精度为231±4 µm。5×15。5 mm只有6个读数,我们提出了一种定量方法来评估图像重建性能。该方法基于一种统计方法,以评估设备的精度(空间分辨率)和重建重点重心的精度(线性)。通过大米概率分布函数拟合来实现此评估。我们获得了平均传感器空间分辨率的最佳值81±3 µm(标准偏差),这是通过以通道输出信号的幅度重建每个位置来实现的。相应的精度为231±4 µm。
摘要 — 本文介绍了一种用于毫米波应用的 K 波段微带技术的简单双二极管整流电路。设计的整流电路具有特殊的结构,可以将整流波的直流分量与数据相关的 IF 信道分离。讨论了二极管特性以提高效率,这涉及精确的系统模拟。执行优化程序以最大限度地提高 RF-DC 转换效率。对于设计的电路,在 35 mW 输入功率下实现了 40% 的测量效率,与以前的工作相比,效率有所提高。该电路在用于无线电力传输和能量收集的集成微波和毫米波系统的设计中具有潜在的应用价值。
平均N. Kandala,1,5, * Sinan Wang,2,4 Joseph E. Blecha,2 Yung-Hua Wang,2 Rahul K. Lall,1 Ali M. Niknejad,1 Youngho Seo,1 Youngho Seo,2 Michael J. Evans,Michael J. Evans,2 Robert R. Flavell,2 Henry F. Vanry F. Vanry F. Vanry F. Vanry F. vanrilic and Me Engineerring and Meniverering and * 1 Computity and * 1 Computity and * 1 computity a anwar anwar an。美国加利福尼亚大学科学科学,伯克利分校,伯克利,加利福尼亚州94720,美国2放射学和生物医学成像系,加利福尼亚大学,旧金山,旧金山,旧金山,旧金山,加利福尼亚州94107,美国3美国3美国,美国加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,旧金山,旧金山,CA 941158,Shangisco上海2011年,中国5铅联系 *通信:averal@berkeley.edu(A.N.K.),mekhail.anwar@ucsf.edu(M.A。)https://doi.org/10.1016/j.isci.2024.111686
在日本,ALMA始于20世纪80年代初科学界自下而上的讨论:1983年提出了大型毫米波阵列(LMA)的设想。1987年,LMA的设想演变为大型毫米波和亚毫米波阵列(LMSA),并考虑了亚毫米波的观测。2001年,NAOJ、NSF和ESO签署决议,成立了ALMA。2004年,NAOJ正式加入ALMA建设,同年“阿塔卡马大型毫米波/亚毫米波阵列(ALMA)”得名。
毫米波(MMW)及以后,由于其有利的功能,包括高数据传输率,足够的容量和低潜伏期,引起了学术和行业的广泛关注和兴趣。然而,在毫米波带上以及超出对天线的严格要求,以维持链路预算,对毫米波带的重要空间路径损失和阴影效应的内在挑战。MMW和Anter Beyond Antennas的一个关键特征是光束转向,表明天线可以切换光束,以便有效地跟踪和通信移动或多个用户。考虑到高效和节能的5G MMW以及超越蜂窝和卫星通信,因此需要开发创新的光束驱动技术来满足不断发展的需求。工业部门和学术部门都已经适当地承认了这些挑战,并率先着眼于梁探手技术的研究和开发。
𝜖 O3 = 𝑆 0P 𝑑𝐵−𝑁𝐹。(5)𝜖 O3 可视为初步评估 LNA 基本性能的定性参考,与接收器性能的潜在优势有关。图 1(a) 和 (b) 中的 LNA 分别显示 𝜖 O3 为 -0.3 dB 和 3.1 dB。这意味着,图 1(a) 中的 LNA 具有负 𝜖 O3(NF 高于增益),可能会损害整体接收器性能,并且从成本效益的角度来看,采用它可能是不合理的,因为这取决于接收器下一阶段的性能,甚至可能导致性能下降和功耗浪费。对于图 1(b) 中的 LNA,𝜖 O3 略微超过 3dB,这可以视为其在接收器中采用的初步定性要求。尽管噪声系数略有增加,但 MT 0 和 𝜖 O3 均支持具有 IIM 的共源共栅放大器对于 MPmCN 的优势。
摘要:在智能运输中,辅助驾驶取决于来自各种传感器的数据集成,尤其是LiDAR和相机。但是,它们的光学性能会在不利的天气条件下降低,并可能损害车辆安全性。毫米波雷达可以更经济地克服这些问题,并得到了重新评估。尽管如此,由于噪声干扰严重和语义信息有限,开发准确的检测模型是具有挑战性的。为了应对这些实际挑战,本文提出了TC – radar模型,这是一种新颖的方法,该方法协同整合了变压器的优势和卷积神经网络(CNN),以优化智能运输系统中毫米波雷达的传感潜力。这种集成的基本原理在于CNN的互补性质,该性质擅长捕获局部空间特征和变形金刚,这些特征在数据中擅长建模长距离依赖性和数据中的全局上下文。这种混合方法允许对雷达信号的更强大和准确的表示,从而提高了检测性能。我们方法的关键创新是引入交叉注意(CA)模块,该模块有助于网络的编码器和解码器阶段之间的高效和动态信息交换。此CA机制可确保准确捕获和传输关键特征,从而显着提高整体网络性能。此外,该模型还包含密集的信息融合块(DIFB),以通过整合不同的高频局部特征来进一步丰富特征表示。此集成过程确保了关键数据点的彻底合并。在Cruw和Carrada数据集上进行的广泛测试验证了该方法的优势,模型的平均精度(AP)为83.99%,平均相交(MIOU)的平均交点为45.2%,表明了鲁棒的雷达感应功能。
摘要:自主驾驶技术被认为是未来运输的趋势。毫米 - 波雷达具有长距离检测和全天候操作的能力,是自动驾驶的关键传感器。自主驾驶中各种技术的开发依赖于广泛的模拟测试,其中模拟通过雷达模型的真实雷达的输出起着至关重要的作用。当前,有许多独特的雷达建模方法。为了促进雷达建模方法的更好的应用和开发,本研究首先分析了雷达检测的机制及其所面临的干扰因素,以阐明建模的内容以及影响建模质量的关键因素。然后,根据实际应用要求,提出了用于测量雷达模型性能的关键指标。此外,对各种雷达建模技术还提供了全面的介绍以及原理和相关的研究进度。评估这些建模方法的优点和缺点以确定其特征。最后,考虑到自动驾驶技术的发展趋势,分析了雷达建模技术的未来方向。通过上述内容,本文为开发和应用雷达建模方法提供了有用的参考和帮助。
摘要 - 我们报告了含镁镁(MGF 2)的微型谐振器中的Kerr频率梳子的产生。两个MGF 2微毫无疑问,其Q因子为10 8 andradiiof 180 µMAND 85 µMWEREFAREFRICATICAND和CHACHACTHACTARIDED。尽管处于1550 nm的波长处处于正常的色散状态,但微腔表现出了Kerr Freemencycombs的产生。可见,单一肺炎腔,当带有1550 nm激光器时,产生了一个梳子,具有光谱范围超过250 nm。这种出乎意料的现象强调了MGF 2微孔子的独特非线性特性,并基于超高Q晶体窃窃私语模式的谐振器,为紧凑型Kerr梳子发电机打开了新的视角。在方面上,紫外线(UV)波长范围内MGF 2的透明度表明,将KERR频率梳延伸到UV光谱中的潜力,进一步增强了非线性光子应用中MGF 2微腔的多功能性。