摘要背景:化脓性链球菌 CRISPR 系统由 Cas9 内切酶 (Sp Cas9) 和含有靶标特异性序列的单链向导 RNA (gRNA) 组成。理论上,Sp Cas9 蛋白可以切割与基因组中结合的 gRNA 一样多的靶标位点。结果:我们引入了一种无 PCR 的多 gRNA 克隆系统来编辑植物基因组。该方法包括两个步骤:(1)在 pGRNA 载体中的 tRNA 和 gRNA 支架序列之间克隆两个单链寡核苷酸片段的退火产物,该片段的每条链上都含有互补的靶标结合序列;(2)使用 Golden Gate 组装方法将来自几个 pGRNA 载体的 tRNA-gRNA 单元与含有 Sp Cas9 表达盒的植物二元载体组装在一起。我们通过进行靶向深度测序验证了多重 gRNA 表达系统在野生烟草(Nicotiana attenuata)原生质体和转化植物中的编辑效率和模式。Sp Cas9-gRNA 的两次近端切割大大提高了编辑效率,并在两个切割位点之间诱导了较大的缺失。结论:这种多重 gRNA 表达系统能够高通量生产单个二元载体,并提高植物基因组编辑的效率。关键词:CRISPR-Cas9、金门组装、多重 gRNA、植物基因组编辑
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
(Fursova等,2023),菌血症(Hong等,2023; Nutman等,2023)和与呼吸机相关的肺炎(Riddles and Judge,2023)。值得注意的是,鲍曼尼曲霉最常见于重症监护病房(ICU)和重症患者,在这些患者中,感染对器官衰竭和脓毒症产生了显着贡献,代表了患者死亡的主要原因(Blanco等,2018; Seok等,2021)。碳青霉烯类历史上一直是控制A. baumannii感染的一线药物。然而,在过去的几十年中,这类药物的广泛使用,再加上鲍曼尼a。baumannii的内在耐药性和获得的抗药性特征,从而导致了受碳苯二甲酸苯甲酸甲抗体引起的感染的升级,这是由碳苯二甲酸苯丙胺的抗苯甲酸抗菌素(crab)(crab)(Raible等,2017年)。这种抗性特征表现出广泛的抗菌耐药性,进一步提高了其发病率和死亡率(Hamidian and Nigro,2019年)。目前,只有有限数量的药物,例如多粘蛋白和Tigecycline,可用于管理感染(Abdul-Mutakabbir等人,2021年)。螃蟹在世界卫生组织的病原体优先级清单中持有“优先级1:批判性”的名称,这表示对全球公共卫生的严重威胁(Tacconelli等,2018)。在马里兰州进行的一项调查,涉及482例机械通风患者的调查显示,鲍曼尼a。30.7%的感染率为30.7%,螃蟹占88例(59.5%)(Harris等,2023)。此外,一项调查报告了几乎所有临床或非临床蟹阳性患者的环境中的螃蟹载荷类似(Schechner等,2023)。因此,预防和控制螃蟹感染的及时有效策略对于限制其对医院获得的感染和死亡率的影响至关重要。
检测化学和生物物质,以涉及各种应用方案,例如可穿戴电子设备,智能点(POC)诊断,环境监测等。[1,2]要适当地满足这些新兴要求,理想的生化传感器应具有诸如高灵敏度,长期鲁棒性,快速响应,实时监测能力,出色的选择性,低单位成本,检测下限,较大的动态范围,低功耗等等等特性[3]但是,人类仍然需要进行陡峭的攀登之旅才能实现这些目标。值得注意的是,2019年冠状病毒病的全球大流行(Covid-19)表明,我们的技术储备在满足这种紧急,庞大和多功能的要求方面并没有充分准备,并引起了对生化感测技术的极大关注。迄今为止,包括化学主义的几种主要技术路线,[4,5] plasonic,[6,7]电化学,[8,9]声传感器,[10,11]等。已经开发出来,每个传感器中的每一个都在某些上述方面具有针对各种实际应用方案的特定优点。纳米制造技术的快速开发用于不同材料和各种结构,由于其小特征和主动结构特性,例如高地表到数量,独特的物理特性,独特的物理特性等,戏剧性地增强了这些传感设备的性能。[12–14]
基于 CRISPR 的基因编辑技术的发展为基因组工程领域带来了一场前所未有的革命。Cas12a 是不同于 Cas9 的 2 类 V 型 CRISPR 相关核酸内切酶家族的成员,已被重新利用并开发为具有不同 PAM 识别位点和多重基因靶向能力的多功能基因编辑工具。然而,使用目前的 CRISPR/Cas12a 技术,在哺乳动物细胞中对长序列进行高效和精确的基因组编辑仍然是一项挑战。为了解决这一限制,我们利用噬菌体重组酶开发了一种高效的 CRISPR/Cas12a 工具,用于在哺乳动物细胞中进行多重精确编辑。通过蛋白质工程,我们能够将噬菌体重组蛋白招募到 Cas12a 中,以增强其同源定向修复效率。我们的噬菌体重组辅助 Cas12a 系统在不影响酶特异性的情况下,将人类细胞中千碱基级敲入的效率提高了 3 倍。该系统的性能与基因编辑任务中常用的酶 Cas9 参考相比毫不逊色,且特异性有所提高。此外,由于 Cas12a 系统的 RNA 处理活性,我们展示了具有类似改进活性的多靶点编辑。这种紧凑的多靶点编辑工具有可能帮助理解多基因相互作用。特别是,它为人类疾病的基因治疗方法铺平了道路,这种方法可以补充现有工具,适用于多基因疾病和需要长序列校正的疾病。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
摘要背景:HAP1 是一种近单倍体人类白血病癌细胞系,常与 CRISPR-Cas9 基因编辑技术结合用于基因筛选。HAP1 携带费城染色体 (Ph) 和插入 19 号染色体的额外的约 30 Mb 的 15 号染色体片段。体外细胞系作为生物医学研究模型系统的潜在用途取决于其维持基因组稳定性的能力。作为一种具有近单倍体基因组的癌细胞系,HAP1 容易出现遗传不稳定性,而其在培养中自发二倍化的倾向进一步加剧了这一问题。此外,CRISPR-Cas9 基因编辑加上长时间的体外细胞培养可能会诱发意外的“脱靶”细胞遗传学突变。为了深入了解染色体不稳定性 (CIN) 和核型异质性,使用多重荧光原位杂交 (M-FISH) 在单细胞分辨率下对 19 个 HAP1 细胞系进行了细胞遗传学表征,其中 17 个为近单倍体,两个为双单倍体。我们重点研究了新的数值 (N) 和结构 (S) CIN,并讨论了观察到的不稳定性的潜在致病因素。对于每个细胞系,我们检查了其倍性、基因编辑状态和体外细胞培养时间。结果:19 个细胞系中有 16 个已经过基因编辑,传代次数从 10 到 35 不等。17 个近单倍体细胞系的二倍体化范围为 4% 到 35%,[1n] 和 [2n] 中期的 N- 和 S-CIN 百分比范围为 7% 到 50%,两个细胞系没有显示 CIN。两种双单倍体细胞系中患有 CIN 的细胞百分比分别为 96% 和 100%。观察到的最常见的 S-CIN 是缺失,随后是非相互易位和罗伯逊易位。有趣的是,我们观察到近单倍体和双单倍体细胞系中都普遍存在与 13 号染色体相关的 S-CIN,且涉及 13 号染色体的罗伯逊易位发生率很高。此外,基因座特异性 BAC(细菌人工染色体)FISH 使我们首次能够显示额外的 15 号染色体片段插入到 HAP1 基因组 19 号染色体的 p 臂而不是 q 臂中。结论:我们的研究揭示了 CIN 的高发生率,导致大多数 HAP1 细胞系的核型异质性,并且细胞系之间的染色体畸变数量有所不同。值得注意的观察是与 13 号染色体相关的结构染色体畸变频率很高。我们表明,CRISPR-Cas9 基因编辑技术与自发二倍体化和长期体外细胞培养相结合,可能有助于在现有 CIN 的 HAP1 细胞系中诱导进一步的染色体重排。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助人提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2021年1月18日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2020.03.31.018671 doi:Biorxiv Preprint
1 日本筑波大学医学院解剖学与胚胎学系,2 日本筑波大学综合与全球专业学院人类生物学博士课程,3 日本筑波大学综合人类科学研究生院生物医学科学博士课程,4 日本筑波大学医学院跨境医学研究中心实验动物资源中心,5 日本筑波理化学研究所生物资源研究中心实验动物部,6 日本筑波大学计算机科学系,7 日本筑波大学医学院生物信息学实验室,8 日本筑波大学综合人类科学研究生院医学科学博士课程,9 日本筑波大学医学院基因组生物学系
小麦及其衍生食品分布广泛,是全球主要食物来源之一。在过去几十年中,与小麦有关的疾病发病率已成为人类面临的全球性问题,这可能与小麦衍生食品的传播有关。已确定结构和代谢蛋白,如 α-淀粉酶/胰蛋白酶抑制剂 (ATI),与小麦过敏(面包师哮喘)和非腹腔性小麦敏感症 (NCWS) 的发病有关。ATI 是一组外源性蛋白酶抑制剂,由分散在硬粒小麦和面包小麦的几条染色体上的多基因家族编码。WTAI-CM3 和 WTAI-CM16 亚基被认为是与面包师哮喘和可能的 NCWS 发病有关的主要蛋白质。使用 CRISPR-Cas9 多路复用策略编辑意大利硬粒小麦品种 Svevo 的谷粒中的 ATI 亚基 WTAI-CM3 和 WTAI-CM16,目的是生产出具有减少不良反应中潜在过敏原数量的小麦品系。使用无标记基因方法,即在不使用选择剂的情况下再生植物,直接从 T 0 代获得没有 CRISPR 载体的纯合突变植物。与传统育种计划相比,这项研究证明了 CRISPR 技术能够在更短的时间内敲除免疫原性蛋白质。在分子(测序和基因表达研究)或生化(免疫学测试)水平上确认了对两个目标基因的编辑。值得注意的是,作为一种多效性效应,编辑品系中的 ATI 0.28 假基因被激活。