阿尔茨海默氏病(AD)的特征是痴呆症诊断前的嗅觉和嗅觉病理缺陷。在这里,我们分析了含有常染色体显性presenilin presenilin 1 E280A突变的家族性AD(FAD)个体的嗅球(OB)和小块(OT)中的差异基因和蛋白表达。与对照组相比,FAD OT在高和低髓鞘区域的β-淀粉样蛋白(Aβ)和CD68的免疫染色增加,并且在高髓层地区的IBA1免疫染色增加。在FAD样品中,RNA测序显示:(1)OB中的病毒感染; (2)OT的炎症,该炎症是通过内嗅皮层从OB到海马的,这是学习和记忆必不可少的大脑区域; (3)少突胶质细胞变形转录本。有趣的是,空间蛋白质组学分析证实了FAD个体OT中的髓鞘变化,这意味着OB和海马之间的通信功能障碍。这些发现增加了嗅觉系统的病毒感染以及相关的炎症和相关的炎症和失调可能破坏海马功能,从而有助于加速FAD进展。
哺乳动物的大脑以高度区域的特定方式逐渐成熟。在特定的发育阶段,脑细胞分化并集成在复杂的功能网络中。细胞分化的程度(例如den- dritic and axonal aborization and myelination) at any given developmental time point is reflected in regional alterations of the neurochemical profile as reported in the rat brain (Tka´cˇ et al.2003)。 因此,随着时间的流逝,代谢产物组成和浓度变化使我们可以推断区域发展程度。 共享共识,包括精神分裂症在内的精神疾病(Tsuang 2000),自闭症(Keller and Persico 2003)和注意力/多动障碍(有关评论,请参见Curatolo等人。 2009)由于神经发育过程中遗传和环境风险因素之间的相互作用而产生。 为了更好地理解这些疾病,表征是至关重要的2003)。因此,随着时间的流逝,代谢产物组成和浓度变化使我们可以推断区域发展程度。共享共识,包括精神分裂症在内的精神疾病(Tsuang 2000),自闭症(Keller and Persico 2003)和注意力/多动障碍(有关评论,请参见Curatolo等人。2009)由于神经发育过程中遗传和环境风险因素之间的相互作用而产生。为了更好地理解这些疾病,表征
初级运动皮层手部区域 (M1 HAND) 和相邻的背侧运动前皮层 (PMd) 形成中央前回中的所谓运动手旋钮。M1 HAND 和 PMd 对于灵巧的手部使用至关重要,它们通过皮质皮层轴突紧密相连,缺乏清晰的分界线。在 24 名年轻的右利手志愿者中,我们进行了多模态映射,以描绘右侧运动手旋钮的结构和功能之间的关系。3 特斯拉的定量结构磁共振成像 (MRI) 产生了区域 R1 图,可作为皮质髓鞘含量的代理。参与者还接受了功能性磁共振成像 (fMRI)。我们绘制了与任务相关的激活和时间精度,同时他们执行一项视觉运动同步任务,该任务需要用左手食指或小指进行视觉提示的外展运动。我们还对运动手柄进行了脑沟对准经颅磁刺激,以确定在两个内在手部肌肉中诱发运动诱发电位 (MEP) 的最佳位置 (热点)。各个运动热点位置沿喙尾轴有所不同。中央前区冠部中的运动热点位置越靠喙,皮质运动 MEP 延迟越长。“热点喙部性”与中央前区冠部的区域髓鞘含量有关。皮质髓鞘含量还与视觉运动同步任务期间的中央前区冠部任务相关激活和时间精确度呈正相关。总之,我们的结果表明皮质髓鞘形成、皮质空间表征和手指运动的时间精确度之间存在联系。我们假设皮质轴突的髓鞘形成促进了 PMd 和 M1 HAND 中的神经元整合,从而促进了运动的精确时间。
抽象磁共振成像(MRI)提供了多种方法来非侵入性地估算大脑中白质(WM)的特性。除了从扩散加权的MRI中得出的各种指标外,还可以估算从T1加权MRI,WM高强度的T2加权MRI,T1:T2比率的髓鞘化的总WM体积,或者是从磁力转移比率(MMTR)的。在这里,我们利用了650名健康成年人[Camcan Cohort]的基于人群的寿命队列中所有这些MR对比的存在,以确定11个常用WM指标的协方差的潜在因素。需要四个因素来解释89%的方差,这是我们用1)纤维密度 /髓鞘形式解释的,2)自由水 /组织损伤,3)3)纤维跨的复杂性和4)微结构复杂性。这些因素显示出年龄和性别的明显影响。为了测试这些因素的有效性,我们将其与心血管健康和认知表现的度量相关。具体来说,我们进行了路径分析1)将心血管措施与WM因素联系起来,鉴于WM健康与心血管健康有关,以及2)将WM因素与认知措施联系起来,鉴于WM健康对认知很重要。即使在适应年龄后,我们也发现与脉压压力相关的血管因子预测了WM因子捕获自由水 /组织损伤,并且几个WM因素为流体智能和加工速度提供了独特的预测。我们的结果表明,在WM的常见MR度量中既有互补的和冗余信息,并且它们的潜在因素可能有助于确定健康衰老中白质健康的差异原因和贡献。
髓磷脂代表一片修饰的质膜,包裹在轴突周围,在启用周围和中枢神经系统中快速神经脉冲传导方面具有至关重要的作用,并为轴突提供营养和代谢的支持。它也是多发性硬化症中免疫系统的主要目标(Fletcher等,2018)。几项研究表明,通过TRKB激活,BDNF对髓鞘化过程的影响(Fletcher等,2018)。即,提出的机制是,BDNF/ TRKB信号传导实际上是激活有丝分裂原激活的蛋白激酶/ ERK途径的级联反应,作为最终结果,它促进了前呈淡黄色的少突胶质细胞和髓鞘形成的差异化,这既有少突胶质细胞和内在含量。使用了TRKB受体的小分子激活剂而不是BDNF时,已经报道了相同的结果(Fletcher等,2018)。由于TRKB受体位于少突胶质细胞上,因此表明,在脱髓鞘病变之后,该受体可以积极调节髓磷脂的表达并引起再生(Huang等,2020)。最近的研究还报道说,在创伤性脑损伤后保持髓磷脂完整性至关重要(Fletcher等,2021)。的确,在施用TRKB受体激活剂LM22A-4对遭受创伤性脑损伤的小鼠后,保留了髓磷脂完整性后,可以预防皮质萎缩,同时减少神经胶质病(Fletcher等人,2021年)。这些研究表明,在赔偿受损的髓磷脂时,TRKB受体可能是引起人们关注的目标,尤其是如果我们考虑到这是多发性硬化症中的主要事件之一。
髓磷脂代表一片修饰的质膜,包裹在轴突周围,在使神经脉冲传导中既有至关重要,在外周和中枢神经系统中都具有至关重要的作用,并为轴突提供了营养和代谢的支持。它也是多发性硬化症中免疫系统的主要目标(Fletcher等,2018)。几项研究表明,通过TRKB激活,BDNF对髓鞘化过程的影响(Fletcher等,2018)。即,提出的机制是,BDNF/ TRKB信号传导实际上是激活有丝分裂原激活的蛋白激酶/ ERK途径的级联反应,作为最终结果,它促进了前呈淡黄色的少突胶质细胞和髓鞘形成的差异化,这既有少突胶质细胞和内在含量。使用了TRKB受体的小分子激活剂而不是BDNF时,已经报道了相同的结果(Fletcher等,2018)。由于TRKB受体位于少突胶质细胞上,因此表明,在脱髓鞘病变之后,该受体可以积极调节髓磷脂的表达并引起再生(Huang等,2020)。最近的研究还报道说,在创伤性脑损伤后保持髓磷脂完整性至关重要(Fletcher等,2021)。的确,在施用TRKB受体激活剂LM22A-4对遭受创伤性脑损伤的小鼠后,保留了髓磷脂完整性后,可以预防皮质萎缩,同时减少神经胶质病(Fletcher等人,2021年)。这些研究表明,在赔偿受损的髓磷脂时,TRKB受体可能是引起人们关注的目标,尤其是如果我们考虑到这是多发性硬化症中的主要事件之一。
在发育过程中,大鼠脑髓磷脂亚菌群中描述了含有含有神经酰胺半乳糖基转移酶的酶UDP-半乳糖糖羟基脂肪酸的定位和活性。其他脂质合成酶,例如脑硫磺硫酸光转移酶,UDP-葡萄糖 - 葡萄糖 - 陶瓷葡萄糖基转移酶和CDP-胆碱-1,2-二酰基甘油胆碱磷酸酶磷酸酶也已在肌蛋白亚纤维上和微晶片中进行比较。纯化的髓磷脂被异icnic蔗糖密度梯度离心分离。四个髓磷脂亚馏分分别在0.55 m-(浅绿色蛋白级分),0.75 m-(重膜蛋白级分)和0.85 m-核(膜馏分)和一个颗粒中,分离并纯化。在所有年龄段,在重肌蛋白馏分中发现了总髓磷脂蛋白的70-75%,而在轻膜林馏分中恢复了2-5%的蛋白质,而在膜分数中约为7-12%。大多数半乳糖基转移酶与重膜蛋白和膜分数有关。所研究的其他脂质合成酶似乎不与纯化的髓磷脂或髓磷脂亚菌群相关,而是在微体积 - 膜分数中富集。在发育过程中,当动物大约20天大然后下降时,微粒体半乳糖基转移酶的特异活性达到了最大值。相比之下,在重膜蛋白和膜级分中,半乳糖基转移酶的特异活性比16天大的动物中微粒体膜高3-4倍。酶在重绿色蛋白级分中的特定活性随着年龄的增长而急剧下降。对各个年龄段的重髓蛋白和髓磷脂亚折原的化学和酶学分析表明,膜级分所含的蛋白质与脂质有关,而不是重膜蛋白分数。与胆固醇相比,膜级分在磷脂中也富集,并含有2':3'-循环核苷酸3'-磷酸水解酶,而与重蛋白质和轻质蛋白质级别相比。膜馏分缺乏髓磷脂碱性蛋白和蛋白质蛋白,并富含高分子量蛋白。在髓鞘化刚刚开始的时候,半乳糖基转移酶在重膜蛋白和膜级分中的特定定位表明它可能在髓鞘化过程中起作用。
少突胶质细胞前体细胞(OPC)是非神经元脑细胞,会产生少突胶质细胞,胶质细胞,麦芽胶质,髓鞘在脑中神经元的轴突。经典以通过少突义生成对髓鞘形成的贡献而闻名,OPC越来越多地赞赏从血管形成到抗原表现,在神经系统中扮演着各种各样的作用。在这里,我们回顾了新兴文献,这表明OPC可能对通过与少突胶质细胞的产生不同的机械学对发展中和成人大脑的神经回路建立和重塑至关重要。我们讨论了将这些细胞定位的OPC的专业特征,以整合活性依赖性和分子提示以塑造脑接线。最后,我们将OPC放置在越来越多的领域的背景下,专注于在健康和疾病的背景下了解神经元和神经胶质之间的交流的重要性。