自 1973 年引入“7+3”方案以来,急性髓系白血病 (AML) 的药物治疗基本保持不变,随后生存率的提高主要归功于支持治疗、感染控制和异基因干细胞移植方面的进步。1,2 风险适应性强化化疗和诱导后干细胞移植现在可使 30% 至 50% 的年轻、身体健康的患者实现长期治愈。3,4 尽管取得了这些进展,但依赖强化化疗仍存在一些挑战,阻碍了特定临床环境下的最佳结果。首先,强化化疗通常因高龄、患者体质下降和/或经济限制而无法进行。相当一部分 60 岁以上的患者可能不适合接受强化治疗,只能单独接受低甲基化药物治疗。5
抽象的雄激素剥夺治疗(ADT)在治疗复发性前列腺癌方面至关重要,并且通常与外部束放射疗法(EBRT)结合使用局部疾病。然而,对于转移性cast割前列腺癌,EBRT通常仅用于姑息性环境,因为无法辐射所有疾病的部位。全身放射治疗优先照射癌细胞(称为放射性药物治疗或靶向放射性核素治疗(TRT))具有可观的好处,可证明可观的益处。在这里,我们探索了新型TRT(90 Y-NM600)的使用,特别是在鼠前列腺肿瘤模型中与ADT结合使用。方法6周大的雄性FVB小鼠与Myc-Cap肿瘤细胞皮下植入,并与ADT(Degarelix)结合使用单次静脉注射90 Y-NM600。通过流式细胞仪分析了给药的组合和施用序列对肿瘤生长的影响和浸润的免疫种群。血清以确定对细胞因子谱的治疗作用。在TRT(ADT→TRT)之前交付的ADT的结果与在TRT之后交付(TRT→ADT)相比,抗肿瘤反应和总生存率明显更大。在免疫缺陷型NRG小鼠中进行的研究未显示治疗序列的差异,表明是一种免疫学机制。髓样衍生的抑制细胞(MDSC)在TRT→ADT处理后显着积累在肿瘤中,并保留了免疫抑制功能。但是,在ADT→TRT组中,具有激活和记忆表型的CD4+和CD8+ T细胞更为普遍。GR1+MDSC的耗竭导致两种治疗序列后的抗肿瘤反应更大。趋化性测定表明,肿瘤细胞分泌的趋化因子募集了MDSC,尤其是CXCL1和CXCL2。使用选择性CXCR2拮抗剂Reparixin,当在用TRT→ADT处理的肿瘤小鼠中使用,进一步改善了抗肿瘤反应和总生存期。
摘要:Menin抑制剂是目前正在临床开发中的新型和有前途的药物,其针对HOX/MEIS1转录程序,这对于在组蛋白赖氨酸N-甲基转移酶2A重新培训(KMT2AR)和NPM1-氧化(NPM1)氧化(NPM1M1M1M1MUT)尖锐leukemias中至关重要。这种新型药物的作用机理是基于MENIN – KMT2A复合物的破坏(由染色质重塑蛋白组成),从而导致表达KMT2A或突变NPM1的AML细胞的分化和凋亡。迄今为止,这种新的药物已在I阶段和II期临床试验中进行了测试,无论是单独的,并与协同药物结合使用,在经过预先治疗的急性白血病患者的缓解率和安全性方面,显示出令人鼓舞的结果。在这篇简短的综述中,我们总结了有关梅宁抑制剂的关键发现,重点介绍了有关急性髓细胞性白血病治疗的作用机理和初步的临床数据,尤其是这种有希望的新药物,尤其是Revumenib和Ziftomenib。
互联网上有很多关于癌症的信息。其中一些可能不可靠或不是最新的,而且很多都不适用于您。您的血液学团队最适合为您提供适合您的信息,因为他们了解您的个人情况。如果您想自己搜索信息,请寻找 NHS 或国家慈善机构等信誉良好的组织。寻找质量标记,例如患者信息论坛 (PIF) 勾选。
小儿高级神经胶质瘤(PHGG),包括小儿胶质母细胞瘤(PGBM)是高度侵略性的小儿中枢神经系统(CNS)恶性肿瘤。PGBM约占所有儿科中枢神经系统恶性肿瘤的约3%,5年生存率约为20%。手术切除和化学放疗通常是PGBM和PHGG的护理标准,但是,即使采用了这些干预措施,诊断为PGBM和PHGG的儿童的生存仍然很差。由于与护理标准相关的缺点,已经做出了许多努力,以创建针对这些恶性肿瘤的新型免疫治疗方法。这些努力包括使用疫苗,基于细胞的疗法和免疫检查点抑制剂。但是,人们认为在许多小儿神经胶质瘤患者中,免疫抑制肿瘤微环境(TME)具有限制免疫疗法的效率的障碍。这些障碍之一包括存在免疫抑制髓样细胞。在这篇综述中,我们将讨论神经胶质瘤TME中存在的各种类型的髓样细胞,包括巨噬细胞和小胶质细胞,髓样衍生的抑制细胞和树突状细胞,以及这些细胞可以用来采用的特定机制来启用免疫抑制。最后,我们将重点介绍针对这些细胞的治疗策略,旨在阻碍髓样细胞衍生的免疫抑制。
摘要 联合疗法是癌症治疗的重要组成部分,常用于克服或预防耐药性。临床前筛选策略通常优先考虑协同药物组合;然而,抗生素组合的研究表明,协同药物相互作用会加速耐药性的出现,因为对一种药物的耐药性会削弱两种药物的疗效。在本研究中,我们旨在使用活细胞成像确定协同作用是否驱动癌细胞系产生耐药性。与之前的肿瘤进化模型一致,我们发现在控制活性时,药物协同作用与产生耐药性的概率增加有关。我们证明这些观察结果是协同作用的预期结果:协同组合中抵抗药物的适应度效益大于非协同组合。这些数据对于旨在开发具有强大和持久疗效的新型癌症治疗组合的临床前策略具有重要意义。
A,BA/F3-ITD细胞和FLT3-ITD AML患者爆炸用Gilteritib和/或AZD1208或AZD1208或DMSO控制,以及C-MYC,MCL-1,P-GSK-3α,α,S9/S21),gsk-3α,gsk-3α,pranial pranial pranial pranial pranial pranial pranial pranial pration和β-3α,β-3α,prationβ和β-免疫印迹。A中的数据以b的形式显示。 c,BA/F3-ITD和MV4-11细胞和FLT3-ITD AML患者爆炸用Gilteritinib和/或AZD1208或DMSO对照进行处理,并具有A中的数据以b的形式显示。c,BA/F3-ITD和MV4-11细胞和FLT3-ITD AML患者爆炸用Gilteritinib和/或AZD1208或DMSO对照进行处理,并具有
NCCN 急性髓系白血病感染预防细菌:氟喹诺酮类(TMP/SMX、头孢菌素)• 中性粒细胞减少期间真菌:泊沙康唑(伏立康唑、艾沙康唑、两性霉素、棘白菌素、氟康唑)• 中性粒细胞减少期间病毒:阿昔洛韦(伐昔洛韦、泛昔洛韦)• 中性粒细胞减少期间及更长时间
针对急性髓样白血病和胃癌的METTL3靶向降解。Authors Kyubin Hwang *,1 , Juhyeon Bae *,1 , Yoo-Lim Jhe 1,2,3,4 , Jungmin Kim 1,2,3,4 , Jae-Ho Cheong 1,2,3,4,5 , Taebo Sim †,1,6 Contact information 1 Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-Ro,Seodaemun-Gu,首尔,韩国共和国03722,韩国首尔伊森大学医学院生物化学与分子生物学系。3韩国首尔大学医学院系统医学研究中心系统医学研究中心的慢性顽固性疾病。4韩国首尔大学医学院外科系。 5韩国首尔大学医学院生物医学系统信息学系。 6韩国首尔伊森大学医学院临床药物发现与发展系。 *同等贡献†相应的作者:tbsim@yuhs.ac摘要:累积证据揭示了甲基转移酶样3(METTL3)在多种癌症类型中的致癌作用,依赖或独立于其M 6 A甲基转移酶活性。 我们设计了针对METTL3并将KH12识别为有效的METTL3降解器的靶向蛋白水解嵌合体(Protac)。 在MOLM-13细胞上对Kh12的处理会导致METTL3的80%以上的降解,并以剂量,时间和泛素依赖性的方式,半最大降解浓度(DC 50)为220 nm。 此外,KH12逆转分化,并具有超过Molm-13细胞抑制剂的抗增殖作用。4韩国首尔大学医学院外科系。5韩国首尔大学医学院生物医学系统信息学系。6韩国首尔伊森大学医学院临床药物发现与发展系。 *同等贡献†相应的作者:tbsim@yuhs.ac摘要:累积证据揭示了甲基转移酶样3(METTL3)在多种癌症类型中的致癌作用,依赖或独立于其M 6 A甲基转移酶活性。 我们设计了针对METTL3并将KH12识别为有效的METTL3降解器的靶向蛋白水解嵌合体(Protac)。 在MOLM-13细胞上对Kh12的处理会导致METTL3的80%以上的降解,并以剂量,时间和泛素依赖性的方式,半最大降解浓度(DC 50)为220 nm。 此外,KH12逆转分化,并具有超过Molm-13细胞抑制剂的抗增殖作用。6韩国首尔伊森大学医学院临床药物发现与发展系。*同等贡献†相应的作者:tbsim@yuhs.ac摘要:累积证据揭示了甲基转移酶样3(METTL3)在多种癌症类型中的致癌作用,依赖或独立于其M 6 A甲基转移酶活性。我们设计了针对METTL3并将KH12识别为有效的METTL3降解器的靶向蛋白水解嵌合体(Protac)。在MOLM-13细胞上对Kh12的处理会导致METTL3的80%以上的降解,并以剂量,时间和泛素依赖性的方式,半最大降解浓度(DC 50)为220 nm。此外,KH12逆转分化,并具有超过Molm-13细胞抑制剂的抗增殖作用。此外,KH12显着抑制了各种胃癌(GC)细胞的生长,其中M 6 A非依赖性的Mettl3活性在肿瘤发生中起着至关重要的作用。在患者衍生的类器官(PDOS)中进一步证实了KH12的抗GC效应。这项研究强调了靶向降解的表面参考作者METTL3作为抗癌策略的治疗潜力。简介N 6-甲基腺苷(M 6 A)是在哺乳动物的内部mRNA上发现的最普遍的化学修饰。这种表演组修饰在调节基因表达,产生各种生理,发育或病理结局1-3中起着至关重要的作用。称为“作家”,“橡皮”和“读者”的三种蛋白质机制分别参与安装,删除和解释M 6 A A RNA修饰4。甲基转移酶样3(mettl3)最初被识别为M 6作者5。通过与甲基转移酶样14(Mettl14)形成稳定的复合物,Mettl3安装M 6 A
e661残基。通过细胞热移分析,我们进一步证实了FLT3和KX2-391之间的相互作用。与DMSO相比,熔融曲线有明显的热移。KX2-391治疗导致检测到蛋白质。 KX2-391以剂量依赖性的方式提高了FLT3蛋白的热稳定性。 KX2-391对BA/F3细胞中FLT3具有有效的抑制作用。 它还抑制了表达FLT3ITD的BA/F3的生长以及所有表达FLT3ITD-TKD突变的细胞。 这些细胞以前被称为对AC220等FLT3抑制剂的抗药性。 BA/F3ITD-F691L细胞对KX2- 391(0.032mm vs. 0.372mm)的敏感性提高了十倍。 KX2-391对含有FLT3-ITD(MV4-11,MOLM13)的人类白血病细胞具有更高的抑制作用,比在FLT3-突变的白血病细胞上具有更高的抑制作用。 我们观察到表达FLT3 – ITD,FLT3 – ITD-D835Y和FLT3 – ITD-F691L的BA/F3细胞的剂量依赖性诱导凋亡。 另外,我们在两个FLT3 – ITD阳性AML细胞系中观察到了它(图 1E,F KX2-391显着抑制了FLT3-ITD中的FLT3和下游靶标STAT5,ERK和AKT的磷酸化,FLT3-ITD-F691L-表达BA/F3细胞以及我们的测定面板的其他细胞。 KX2-391是微管蛋白/SRC抑制剂。 我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。KX2-391治疗导致检测到蛋白质。KX2-391以剂量依赖性的方式提高了FLT3蛋白的热稳定性。KX2-391对BA/F3细胞中FLT3具有有效的抑制作用。 它还抑制了表达FLT3ITD的BA/F3的生长以及所有表达FLT3ITD-TKD突变的细胞。 这些细胞以前被称为对AC220等FLT3抑制剂的抗药性。 BA/F3ITD-F691L细胞对KX2- 391(0.032mm vs. 0.372mm)的敏感性提高了十倍。 KX2-391对含有FLT3-ITD(MV4-11,MOLM13)的人类白血病细胞具有更高的抑制作用,比在FLT3-突变的白血病细胞上具有更高的抑制作用。 我们观察到表达FLT3 – ITD,FLT3 – ITD-D835Y和FLT3 – ITD-F691L的BA/F3细胞的剂量依赖性诱导凋亡。 另外,我们在两个FLT3 – ITD阳性AML细胞系中观察到了它(图 1E,F KX2-391显着抑制了FLT3-ITD中的FLT3和下游靶标STAT5,ERK和AKT的磷酸化,FLT3-ITD-F691L-表达BA/F3细胞以及我们的测定面板的其他细胞。 KX2-391是微管蛋白/SRC抑制剂。 我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。KX2-391对BA/F3细胞中FLT3具有有效的抑制作用。它还抑制了表达FLT3ITD的BA/F3的生长以及所有表达FLT3ITD-TKD突变的细胞。这些细胞以前被称为对AC220等FLT3抑制剂的抗药性。BA/F3ITD-F691L细胞对KX2- 391(0.032mm vs. 0.372mm)的敏感性提高了十倍。KX2-391对含有FLT3-ITD(MV4-11,MOLM13)的人类白血病细胞具有更高的抑制作用,比在FLT3-突变的白血病细胞上具有更高的抑制作用。我们观察到表达FLT3 – ITD,FLT3 – ITD-D835Y和FLT3 – ITD-F691L的BA/F3细胞的剂量依赖性诱导凋亡。另外,我们在两个FLT3 – ITD阳性AML细胞系中观察到了它(图1E,F KX2-391显着抑制了FLT3-ITD中的FLT3和下游靶标STAT5,ERK和AKT的磷酸化,FLT3-ITD-F691L-表达BA/F3细胞以及我们的测定面板的其他细胞。KX2-391是微管蛋白/SRC抑制剂。 我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。KX2-391是微管蛋白/SRC抑制剂。我们监测了SRC磷酸化,以评估KX2-391对微管结构的影响。