摘要:细胞不断面临着管理氧化剂的挑战。在需氧生物中,氧气 (O 2 ) 用于产生能量,产生活性氧 (ROS) 作为酶促反应的副产物。为了防止氧化损伤,细胞拥有一个复杂的氧化还原清除剂和抗氧化酶系统,共同形成抗氧化防御系统。该系统维持氧化还原平衡,并能够产生调节基本细胞功能的局部氧化信号。这种防御的一个关键组成部分是硫氧还蛋白 (Trx) 系统,其中包括 Trx、硫氧还蛋白还原酶 (TrxR) 和 NADPH。Trx 系统逆转大分子的氧化并通过过氧化物酶 (Prx) 间接中和 ROS。这种双重功能保护细胞免受损伤积累并支持生理细胞信号传导。然而,Trx 系统还可以保护肿瘤免受氧化损伤,帮助它们存活。由于新陈代谢产生的 ROS 水平升高,肿瘤通常依赖于 Trx 系统。此外,Trx 系统还调节增殖和新血管生成等关键途径,肿瘤利用这些途径来促进生长并优化营养和氧气供应。因此,Trx 系统是癌症治疗的潜在靶点。挑战在于选择性地靶向恶性细胞而不破坏健康细胞中的氧化还原平衡。这篇综述文章的目的有三方面:首先,阐明 Trx 系统的功能;其次,讨论 Trx 系统作为癌症治疗的潜在靶点;第三,介绍抑制 Trx 系统关键成分的可能性,并概述这些抑制剂的最新临床研究。
缩写:AAD,衰老相关疾病;年龄,晚期糖基终产物; ap,apurinic/apyrimidinic; APE1/REF-1,apurinic/apyrimidin inononononononononononocleplease1/redox fastor-1; CM,心肌细胞; CO,一氧化碳; Copp,钴原源性; CP-312,心脏保护剂-312; CPC,心脏祖细胞; CSC,心脏干/祖细胞; CVD,心血管疾病; DHA,二十六烯酸; EC,内皮细胞; ECFC,内皮菌落形成细胞; eNOS,内皮一氧化氮合酶; EPA,二糖酸; EPC,内皮祖细胞; ESC,胚胎干细胞; Foxo,叉子盒; GPX,谷胱甘肽过氧化物酶; GRX,谷毒素; GWAS,全基因组协会研究; H 2 O 2,过氧化氢; H 2 S,硫化氢; HGPS,Hutchinson – Gilford progeria综合征; HIF-1α,缺氧诱导因子-1α; HO-1,血红素氧酶-1; I/R,缺血/再灌注; IPSC,诱导多能干细胞;线粒体电子传输链; MEF,小鼠胚胎成纤维细胞; Mi,心肌梗塞; MPTP,线粒体通透性过渡孔; NAC,N-乙酰L-半胱氨酸; NLRP3,点头样受体蛋白3;不,一氧化氮; NOX,NADPH氧化酶; NRF2,核因子红细胞2相关因子2; NRP1,Neuropilin 1; PM 2.5,颗粒物; PRX,过氧蛋白; PUFA,多不饱和脂肪酸; ROS,活性氧; SASP,与衰老相关的分泌表型; SDF-1,基质细胞衍生的因子1; SMPC,平滑肌样祖细胞;草皮,超氧化物歧化酶; SRF,血清反应因子; T-BHQ,Tert-丁基氢喹酮; TRX,TXN,硫氧还蛋白; TRXR,硫氧还蛋白还原酶; VEGF,血管内皮生长因子; VSMC,血管平滑肌细胞。
在神经退行性疾病和衰老中,小胶质细胞,脑免疫细胞获得了疾病相关的小胶质细胞特征,这些特征可能有利于早期疾病状态的组织修复,但是在晚期,在晚期恢复了脑稳态的能力,并保护神经元,并保护神经元,并因细胞死亡而保护神经元。衰老的小胶质细胞表现出与分泌相关的衰老表型,并且代谢受损,而NAD耗竭,该表型在基因组完整性和细胞代谢中起着核心作用。新兴证据强调了衰老和神经退行性疾病中NAD的较低水平,因此Sirtuins的活性受损。在这项研究中,我们研究了小胶质细胞中衰老过程中发生的变化,开发了一种慢性暴露(长达30天)的体外模型至高铁浓度。最初,铁处理会诱导小胶质细胞增殖,增强吞噬作用,并提高NAD水平表明小胶质细胞激活。经过30天的治疗后,小胶质细胞获得了一种胶状表型,其特征是以增殖停滞,吞噬作用降低,SASP标记的上调,EVS产生显着增加。生化,转录组和代谢组分析显示,铁处理的小胶质细胞中NAD和NADPH含量的水平降低,与CD38的表达增加(主要NAD摄入酶)的表达增加。此外,与对照小胶质细胞相比,在老年/衰老细胞中下调的Sirtuin 6的水平和活性大大降低。。衰老的小胶质细胞与健康的小胶质细胞诱导的健康细胞中的衰老特征共培养,这表明Saßgal和P21阳性细胞的显着增加以及NAD水平降低了。结论是NAD的提升可能代表了一种有用的策略,可以抵消衰老和衰老对健康小胶质细胞的传播。
摘要:我们已经证明,内皮特异性 DHFR(二氢叶酸还原酶)缺乏是 eNOS(内皮 NO 合酶)解偶联和腹主动脉瘤 (AAA) 形成的原因。在本文中,我们研究了 microRNA-192-5p 在介导 NOX(NADPH 氧化酶)依赖性 DHFR 缺乏和 AAA 形成中的新作用。microRNA-192-5p 预计以 DHFR 为靶点。有趣的是,人类 AAA 患者的智人 - microRNA-192-5p 表达显著上调。在暴露于过氧化氢 (H 2 O 2 ) 的人主动脉内皮细胞中,智人 - microRNA-192-5p 表达显著上调。这伴随着 DHFR mRNA 和蛋白质表达的显著下调,而智人 - microRNA-192-5p 特异性抑制剂可恢复这种下调。值得注意的是,microRNA-192-5p 表达在血管紧张素 II(血管紧张素 II)输注的 hph-1(高苯丙氨酸血症 1)小鼠中显著上调,而在 hph-1–NOX1、hph-1–NOX2、hph-1–中性粒细胞胞质因子 1 和 hph-1–NOX4 双突变小鼠中减弱,AAA 发病率也消失,表明 microRNA-192-5p 在 NOX 激活后具有下游效应作用。在超声和尸检中,用小鼠–microRNA-192-5p 抑制剂进行体内治疗可减弱血管紧张素 II 输注的 hph-1 小鼠的腹主动脉扩张。它还逆转了血管重塑的特征,包括基质降解、外膜肥大和腔内血栓形成。这些动物恢复了 DHFR mRNA 和蛋白质表达,减弱了超氧化物的产生,重新偶联了 eNOS,并保留了 NO 的生物利用度。总之,我们的数据首次证明了 microRNA-192-5p 在介导 NOX 依赖性 DHFR 缺乏和 AAA 形成中起着关键作用,抑制 DHFR 缺乏和 AAA 形成可有效减缓 AAA 的发展。由于小鼠和人类 microRNA-192-5p 序列相同,microRNA-192-5p 抑制剂可能很容易转化为治疗 AAA 的新型疗法。(高血压。2021;78:282–293。DOI:10.1161/HYPERTENSIONAHA.120.15070。)• 数据补充
摘要:铁缺乏贫血(IDA)使人容易受到细菌感染。中性粒细胞的抗菌防御机制是由烟酰胺腺苷二核苷酸磷酸氢(NADPH)氧化爆发策划的,该爆发是铁依赖的。先前的少数研究记录了铁缺陷儿童中性粒细胞氧化爆发的减少,主要基于硝基蓝色四唑测试(NBT)。在全球范围内,使用基于流式细胞术的二氢若丹明(DHR)分析,很少有研究进行研究,而在印度则没有。目的:通过基于流式细胞仪的二氢若丹明(DHR)测定,估计铁缺乏症对5岁以下儿童中性粒细胞氧化爆发活性的影响,并将其与对照组进行比较。方法:在6个月至5岁之间的36名儿童被诊断为中度(HB 7-10 gm/dl),以降级为严重(HB <7 gm/dl)铁缺乏症贫血,作为具有相当数量的性别/年龄匹配对照的病例。分析外周血的血液学和生化参数,例如完整的铁剖面,血清维生素B12和叶酸水平。使用基于流动仪的二氢二胺(DHR)测定法评估中性粒细胞中嗜中性粒细胞的氧化爆发活性。结果:与对照组相比,铁缺乏症贫血患者的NEU促粮素的百分比显着降低了刺激性嗜中性粒细胞中的平均荧光指数和中性粒细胞氧化指数(NOI)的百分比。在情况下,血红蛋白与NOI和中性粒细胞的百分比显示出显着的正相关。结论:得出结论,中性粒细胞氧化爆发参数的显着降低表明对病原体的先天免疫反应不足,并使铁缺乏症贫血患者更容易受到感染,进一步受贫血的严重性。
摘要:电子分叉是一种巧妙的生物能量转换机制,可有效耦合三种不同的生理相关底物。因此,执行此功能的酶通常在调节细胞氧化还原代谢中起关键作用。一种这样的酶是 NADH 依赖性还原铁氧还蛋白:NADP + 氧化还原酶 (NfnSL),它将 NAD + 的热力学有利还原耦合以驱动铁氧还蛋白从 NADPH 的不利还原。NfnSL 与其底物的相互作用被限制在严格的化学计量条件下,这可确保非生产性分子内电子转移反应的能量损失最小。然而,决定这一情况的因素尚不清楚。NfnSL 的一个奇怪特征是,分叉电子的两个初始受体都是独特的铁硫 (FeS) 簇,每个簇包含一个非半胱氨酸配体。尽管位点分化的 FeS 配体在许多氧化还原活性酶中都存在,但它们的生化影响和机制作用仍是谜。在此,我们描述了野生型 NfnSL 和变体的生化研究,其中位点分化的配体之一已被半胱氨酸取代。基于染料的稳态动力学实验、底物结合测量、生化活性测定和酶中电子分布评估的结果表明,NfnSL 中的这种位点分化配体在维持两种电子转移途径执行的协调反应的保真度方面发挥作用。鉴于这些辅助因子的共性,我们的发现具有广泛的意义,超越了电子分叉和机械生物化学,并可能为调节细胞氧化还原平衡的方法提供信息,以实现有针对性的代谢工程方法。
摘要 当角膜微粒体在 NADPH 生成系统存在下与花生四烯酸一起孵育时,会形成四种极性代谢物(化合物 AD)。一氧化碳、SKF 525A 和抗细胞色素 c 还原酶抗体可抑制这些代谢物的合成。发现其中一种代谢物化合物 C 以剂量依赖性方式抑制角膜上皮中部分纯化的 Na+,K+-ATPase,ID5o 为 =50 nM。化合物 C 经薄层色谱和高效液相色谱纯化后,发现其具有紫外吸收光谱,最大吸光度在 236 nm 处,表明存在共轭二烯。使用正负离子化模式对衍生化合物 C 进行质谱分析,该化合物由特定标记的([5,6,8,9,11,12,14,15-2H8J 花生四烯酸)和未标记的花生四烯酸的混合物合成。丰富的碎片离子与化合物 C 一致,化合物 C 是花生四烯酸的单氧衍生物,在二十碳烷主链的碳 12 处有羟基取代基;[2HgJ 花生四烯酸中的所有氘原子都保留在结构中。氧化臭氧分解产生的产物表明 20 碳链的 10 和 11 位置以及 14 和 15 位置的碳之间存在双键。因此,化合物 C 被定性为 12-羟基二十碳四烯酸。然而,只有 12(R) 异构体被发现是角膜上皮中 Na+,K+-ATPase 的抑制剂,这表明生物活性化合物 C 是 12(R)-羟基-5,8,10,14-二十碳四烯酸。这种在角膜中合成的 Na+,K+-ATPase 抑制剂可能在调节眼球透明度和人体房水分泌方面发挥重要作用。
生物学 生物世界的多样性:生物世界:生物世界的多样性,分类类别,生物学分类:界(原核生物界、原生生物界、真菌界、植物界和动物界),病毒、类病毒和地衣,植物界:藻类、苔藓植物、蕨类植物、裸子植物、被子植物,动物界:动物分类的基础和动物分类植物和动物的结构组织:开花植物的形态:根、茎、叶、花序、花、果实、种子,典型的开花植物的半技术描述,一些重要科的描述,开花植物的解剖学:组织系统,双子叶植物和单子叶植物的解剖学动物的结构组织:器官和器官系统,两栖动物 - 青蛙细胞:结构和功能:细胞:生命:细胞、细胞理论、细胞概述、原核细胞、真核细胞 生物分子:生物体化学成分分析、初级和次级代谢物、生物大分子、蛋白质、多糖、核酸、蛋白质结构、酶 细胞周期和细胞分裂:细胞周期、有丝分裂和减数分裂及其意义 植物生理学:高等植物的光合作用:光合作用、早期实验、光合作用的位置、参与光合作用的色素、光反应、电子传递、ATP 和 NADPH 的合成和利用、C4 途径、光呼吸、影响光合作用的因素 植物的呼吸作用:植物呼吸吗?糖酵解、发酵、有氧呼吸、呼吸平衡表、克雷布斯/柠檬酸循环、呼吸商植物生长和发育:生长、分化、去分化和再分化、发育、植物生长调节剂人体生理学:呼吸和气体交换:呼吸器官、呼吸机制、气体交换、气体运输、呼吸调节、呼吸系统疾病体液和循环:组织液-血液、淋巴、循环途径、双循环、心脏活动调节、循环系统疾病排泄产物及其消除:人体排泄系统、尿液形成、小管功能、滤液浓缩机制、肾功能调节、排尿、其他器官在排泄中的作用、排泄系统疾病
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用
异戊二酸脱氢酶(IDH)1和2(IDH1/2)的变体通过催化2-氧基谷物(2OG)(2R)-Hy- hy-hy-droxyglutarate的NADPH依赖性降低,改变了癌细胞中癌细胞中的代谢。但是,尚不清楚2OG的衍生物如何影响癌细胞代谢。在这里,我们使用合成C3-和C4烷基化的2OG衍生物研究了两个与癌症相关的IDH1变体(R132H IDH1)的典型选择性,这是两个与癌症相关的IDH2变体(R172K IDH2,R172K IDH2,R140Q IDH2)和WT IDH1/2。基于吸光度,NMR和电化学测定法被用于监测WT IDH1/2和IDH1/2变体催化的2OG 2OG DECOG-DES-DES-DES-DES-DESIDIVED在存在和不存在2OG的情况下。我们的结果表明,2OG衍生物可以用作研究的IDH1/2变体的底物,而不是WT IDH1/2的底物,并且有可能充当2OG竞争力抑制剂。动力学参数表明,包括天然产物3-甲基-2OG在内的一些2OG衍生物相同甚至更高的IDH1/2变体底物,比2OG相同或更高。此外,在3-甲基 - 3-甲基 - ,3-丁基 - 和3-苯甲酰基 - 取代的2og cog Decientiation的情况下,NMR和质谱研究确定了醇的IDH1/2变异催化产生;具有IDH1变体(R132C/S280F IDH1)的3-丁基-2OG的晶体结构揭示了活性位点结合。The combined results highlight the potential for (i) IDH1/2 variant- catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhi- bition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv)可能使用IDH1/2变体作为生物催化剂。