神经源性吞咽困难是由中央和周围神经系统问题引起的吞咽困难,在帕金森氏病和中风等疾病中尤为普遍。它对受影响的个体的生活质量显着影响,并造成额外的负担,例如营养不良,抽吸肺炎,窒息,甚至由于不当饮食而导致的窒息死亡。物理疗法提供高疗效和低成本的非侵入性治疗。支持在吞咽困难治疗中使用物理治疗的证据正在增加,包括神经肌肉电刺激,感觉刺激,经颅直流电流刺激和重复的经颅磁刺激等技术。初步研究显示出令人鼓舞的结果,但特定治疗方案的有效性仍需要进一步验证。目前,缺乏科学证据来指导患者选择,制定适当的治疗方案并准确评估治疗结果。因此,本综述的主要目标是审查现有研究的结果,总结物理治疗在吞咽困难管理中的应用,我们还讨论了神经源性吞咽困难的物理治疗的机制和治疗方法。
抽象的星形胶质细胞是大脑中最丰富的细胞。星形胶质细胞参与神经递质的吸收和回收,炎症,神经剂,神经胶片的释放,突触活性的调节,维持血脑屏障的维持和其他过程。星形胶质细胞有助于使中枢神经系统保持健康且正常工作。这些细胞与各种神经退行性疾病的发作和进展有关。最近的研究表明,这些细胞在大脑的正常生理稳态以及神经变性和疾病中都起着多种活性作用。星形胶质细胞在神经系统功能以及阿尔茨海默氏病,帕金森氏病,亨廷顿氏病和肌萎缩性侧向硬化症中发挥作用。本评论阐明了星形胶质细胞在神经元功能及其机制中的作用。我们还总结了星形胶质细胞在各种神经疾病中的作用。
本文研究了空气污染与神经系统疾病之间日益认识但复杂的关系。尽管空气污染对呼吸道和心血管健康的有害影响已得到充分记录,但其对神经和认知疾病的影响是令人关注的新兴领域。在这篇迷你综述中,我们探讨了各种空气污染物(例如颗粒物质,氮氧化物和多环芳芳族烃)的复杂机制,从而有助于神经病理学。重点在于氧化应激和炎症在恶化状况(如阿尔茨海默氏病和帕金森氏病)中的作用。通过揭示这些联系,该论文阐明了环境因素对神经健康的更广泛含义,并强调了对政策干预的迫切需求,以减轻空气污染对神经系统的影响。
揭示了这些症状与公认的神经或医学状况之间的不相容性(2)。与其他神经系统疾病相比,FND与残疾水平相似,身体和心理生活质量受损(3)。FND的预后通常具有挑战性,多达40%的患者报告的结果与最近的7年随访期间相似或比其初始状况更糟糕或更糟糕的结果(4)。传统上,FND的诊断依赖于症状的有机原因。然而,最近的证据为FND的病理生理学提供了新的见解,从而促进了更全面的理解和对潜在生物标志物的识别(5)。在这项研究中,进行了一项素分析以研究FND的结构性大脑变化。我们的目的是确定特定的定量测量是否可以用作区分各种FND的潜在生物标志物。
1。检查是否歧视类似的声音,例如猪,钉和啄。孩子必须首先确定声音(例如B/D)的差异,然后才能了解每个字母的声音。研究表明,使这些小区别的能力与阅读成功密切相关。
许多精神和神经疾病的发病和发展往往涉及影响中枢和自主神经系统的复杂分子、细胞和系统变化。6 神经元损伤、炎症和异常蛋白质积累会破坏大脑网络内的正常信号流动。这种大脑水平的功能障碍与一系列症状和自主神经系统失调有关,同时揭示了神经基质和神经精神疾病之间的相互作用。6 例如,功能障碍的心脏活动与健康和神经系统人群的认知功能受损有关,7-9 并且心率变异性(即心脏功能的衡量标准)最近被用作生物标志物,以区分轻度认知障碍患者的阿尔茨海默病和路易体痴呆症。10 此外,帕金森病中多巴胺能神经元的退化导致运动波动和运动障碍。然而,相关研究也强调了肠道微生物群在加速帕金森病发病机制的非适应性免疫和炎症反应中的作用。11,12 至关重要的是,临床前和临床研究表明,肠道微生物群的改变可能是几种神经退行性疾病(包括阿尔茨海默病和帕金森病)和主要精神疾病进展的易感因素。13–17 例如,最近的研究结果表明,与对照组相比,双相情感障碍患者的微生物丰富度持续下降,而重度抑郁症、精神分裂症和精神病患者的β多样性存在差异。16 同样,肝硬化、肝性脑病等肝病也通过肝脑轴与神经系统症状密切相关。18,19
摘要:神经系统疾病 (ND) 正变得越来越普遍,对孕妇、父母、健康婴儿和儿童都造成了困扰。神经系统疾病有多种形式,每种形式都有各自的起源、并发症和结果。近年来,由于磁共振成像 (MRI)、脑磁图 (MEG) 和正电子发射断层扫描 (PET) 等神经成像方式的出现,人们对大脑功能的复杂性有了更好的了解。借助高性能计算工具和各种机器学习 (ML) 和深度学习 (DL) 方法,这些方式发现了识别和诊断神经系统疾病的令人兴奋的可能性。本研究遵循计算机辅助诊断方法,概述了预处理和特征提取技术。本文对现有的 ML 和 DL 方法检测 ND 的性能进行了严格审查和比较。本研究的综合部分还展示了检测和记录图像、信号和语音等的各种模式和疾病特定数据集。还总结了关于 ND 的有限相关工作,因为该领域专注于疾病和检测标准的工作明显较少。本研究还介绍了一些标准评估指标,以便更好地分析和比较结果。本研究还概述了一致的工作流程。最后,还包含了一个强制性讨论部分,以详细阐述这一新兴领域面临的开放研究挑战和未来工作的方向。
本文(Yang等人)提出了Munet,这是一个新型的网络框架,结合了UNET和MAMBA在脑肿瘤分割方面的优势。一种特殊的基于SSM的结构,称为SD-SSM块和SD-CONV结构,通过捕获多尺度的全局和局部功能来增强细分性能,并在功能之间压缩冗余信息。此外,他们使用了结合MIOU,骰子和边界损失的新型损失函数,以优化分割的重叠和相似性。这些创新提高了脑肿瘤分割的准确性和效率。总的来说,这些论文中提出的贡献和工作涵盖了医学成像和机器学习的各个方面。论文1的重点是针对早期医学诊断的特征选择和分类。论文2提出了一个双重注意机制图卷积神经网络,用于基于脑电图的情绪产生。论文3介绍了
软件工程涉及编写新代码或编辑现有代码。最近的研究已经调查了与阅读和理解代码相关的神经过程——然而,我们缺乏对代码编写背后的人类认知过程的透彻理解。虽然散文阅读和写作已经得到了彻底的研究,但同样的研究还没有应用于代码编写。在本文中,我们利用功能性脑成像来研究代码编写与散文写作的神经表征。我们提出了第一项人类研究,其中参与者在接受功能性磁共振成像 (fMRI) 脑部扫描时编写代码和散文,使用全尺寸 fMRI 安全的 QWERTY 键盘。我们发现代码编写和散文写作是截然不同的神经任务。虽然散文写作需要与语言相关的大量左半球活动,但代码编写需要更多右半球的激活,包括与注意力控制、工作记忆、规划和空间认知相关的区域。这些发现与研究代码和散文理解的现有工作不同。相比之下,我们提出了第一个证据,表明代码和散文写作在神经层面上有很大不同。
感谢作者感谢实验室技术人员Merete Fredsgaard,Hanne Krone Nielsen,Ditte Bech Laursen和LouiseWelshøjMadsen,Aalborg University,Aalborg University,Aalborg University,Albort University和Animal Technicians Karina Lassen Holm和Dorte Hermansen,Dorte Hermansen,Aarhus University,Aarhus,Aarhus,Aarhus,Aarhus,在研究期间的优秀研究。Aalborg University化学与生物科学系Anders Olsen和HeleneHalkjærJensen副教授,因使用Olympus IX83倒置显微镜提供了协助,该显微镜配备了Yokogawa Coldocawa Confocal Concocal Concocal CSU-W1旋转磁盘。Aalborg University化学与生物科学系Anders Olsen和HeleneHalkjærJensen副教授,因使用Olympus IX83倒置显微镜提供了协助,该显微镜配备了Yokogawa Coldocawa Confocal Concocal Concocal CSU-W1旋转磁盘。
